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Glossary19

Control parameter A parameter of internal or external20

origin that when manipulated controls the system21

in a nonspecific fashion and is capable of inducing22

changes in the system’s behavior. These changes may23

be a smooth function of the control parameter, or24

abrupt at certain critical values. The latter, also referred25

to as phase transitions, are of main interest here as they26

only occur in nonlinear systems and are accompanied27

by phenomena like critical slowing down and fluctua-28

tion enhancement that can be probed for experimen-29

tally.30

Haken–Kelso–Bunz (HKB) model First published in31

1985, the HKB model is the best known and probably32

most extensively tested quantitative model in human33

movement behavior. In its original form it describes34

the dynamics of the relative phase between two os-35

cillating fingers or limbs under frequency scaling. The36

HKBmodel can be derived from coupled nonlinear os-37

cillators and has been successfully extended in various38

ways, for instance, to situations where different limbs39

like an arm and a leg, a single limb and a metronome,40

or even two different people are involved.41

Order parameter Order parameters are quantities that42

allow for a usually low-dimensional description of the43

dynamical behavior of a high-dimensional system on44

a macroscopic level. These quantities change their val-45

ues abruptly when a system undergoes a phase transi- 46

tion. For example, density is an order parameter in the 47

ice to water, or water to vapor transitions. In move- 48

ment coordination the most-studied order parameter 49

is relative phase, i. e. the difference in the phases be- 50

tween two or more oscillating entities. 51

Phase transition The best-known phase transitions are 52

the changes from a solid to a fluid phase like ice to wa- 53

ter, or from fluid to gas like water to vapor. These tran- 54

sitions are called first-order phase transitions as they 55

involve latent heat, which means that a certain amount 56

of energy has to be put into the system at the transition 57

point that does not cause an increase in temperature. 58

For the second-order phase transitions there is no la- 59

tent heat involved. An example from physics is heating 60

a magnet above its Curie temperature at which point it 61

switches from a magnetic to a nonmagnetic state. The 62

qualitative changes that are observed in many non- 63

linear dynamical systems when a parameter exceeds 64

a certain threshold are also such second-order phase 65

transitions. 66

Definition of the Subject 67

Movement Coordination is present all the time in daily 68

life but tends to be taken for granted when it works. One 69

might say it is quite an archaic subject also for science. 70

This changes drastically when some pieces of the locomo- 71

tor system are not functioning properly because of injury, 72

disease or age. In most cases it is only then that people 73

become aware of the complex mechanisms that must be 74

in place to control and coordinate the hundreds of mus- 75

cles and joints in the body of humans or animals to al- 76

low for maintaining balance while maneuvering through 77

rough terrains, for example. No robot performance comes 78

even close in such a task. 79

Although these issues have been around for a long time 80

it was only during the last quarter century that scientists 81

developed quantitative models for movement coordina- 82

tion based on the theory of nonlinear dynamical systems. 83

Coordination dynamics, as the field is now called, has be- 84

come arguably the most developed and best tested quanti- 85

tative theory in the life sciences. 86

More importantly, even though this theory was orig- 87

inally developed for modeling of bimanual finger move- 88

ments, it has turned out to be universal in the sense that it 89

is also valid to describe the coordination patterns observed 90

between different limbs, like an arm and a leg, different 91

joints within a single limb, like the wrist and elbow, and 92

even between different people that perform movements 93

while watching each other. 94
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2 Movement Coordination

Introduction95

According to a dictionary definition: Coordination is the96

act of coordinating, making different people or things97

work together for a goal or effect.98

When we think about movement coordination the99

“things” we make work together can be quite different like100

our legs for walking, fingers for playing the piano, mouth,101

tongue and lips for articulating speech, body expressions102

and the interplay between bodies in dancing and ballet,103

tactics and timing between players in team sports and so104

on, not to forget other advanced skill activities like skiing105

or golfing.106

All these actions have one thing in common: they look107

extremely easy if performed by people who have learned108

and practiced these skills, and they are incredibly difficult109

for novices and beginners. Slight differences might exist110

regarding how these difficulties are perceived, for instance111

when asked whether they can play golf some people may112

say: “I don’t know, let me try”, and they expect to out-drive113

Tiger Woods right away; there are very few individuals114

with a similar attitude toward playing the piano.115

The physics of golf as far as the ball and the club is116

concerned is almost trivial: hit the ball with the highest117

possible velocity with the club face square at impact, and118

it will go straight and far. The more tricky question is119

how to achieve this goal with a body that consists of hun-120

dreds of different muscles, tendons and joints, and, im-121

portantly, their sensory support in joint, skin and muscle122

support (proprioception), in short, hundreds of degrees123

of freedom. How do these individual elements work to-124

gether, how are they coordinated? Notice, the question is125

not how do we coordinate them? None of the skills men-126

tioned above can be performed by consciously controlling127

all the body parts involved. Conscious thinking sometimes128

seems to do more harm than good. So how do they/we129

do it? For some time many scientists sought the answer to130

this question in what is calledmotor programs or, more re-131

cently, internal models. The basic idea is straightforward:132

when a skill is learned it is somehow stored in the brain133

like a program in a computer and simply can be called134

and executed when needed. Additional learning or train-135

ing leads to skill improvement, interpreted as refinements136

in the program. As intuitive as this sounds and even if one137

simply ignores all the unresolved issues like how such pro-138

grams gain the necessary flexibility or in what form they139

might be stored in the first place, there are even deeper rea-140

sons and arguments suggesting that humans (or animals141

for that matter) don’t work like that. One of themost strik-142

ing of these arguments is known as motor equivalence: ev-143

erybody who has learned to write with one of their hands144

can immediately write with the foot as well. This writing 145

may not look too neat, but it will certainly be readable 146

and represents the transfer of a quite complex and diffi- 147

cult movement from one end-effector (the hand) to an- 148

other (the foot) that is controlled by a completely different 149

set of muscles and joints. Different degrees of freedom and 150

redundancy in the joints can still produce the same output 151

(the letters) immediately, i. e. without any practice. 152

For the study of movement coordination a most im- 153

portant entry point is to look at situations where themove- 154

ment or coordination pattern changes abruptly. An exam- 155

ple might be the well-known gait switches from walk to 156

trot to gallop that horses perform. It turns out, however, 157

that switching among patterns of coordination is a ubiq- 158

uitous phenomenon in human limb movements. As will 159

be described in detail, such switching has been used to 160

probe human movement coordination in quantitative ex- 161

periments. 162

It is the aim of this article to describe an approach to 163

a quantitative modeling of human movements, called co- 164

ordination dynamics, that deals with quantities that are ac- 165

cessible from experiments and makes predictions that can 166

and have been tested. The intent is to show that coordi- 167

nation dynamics represents a theory allowing for quanti- 168

tative predictions of phenomena in a way that is unprece- 169

dented in the life sciences. In parallel with the rapid de- 170

velopment of noninvasive brain imaging techniques, co- 171

ordination dynamics has even pointed to new ways for the 172

study of brain functioning. 173

The Basic Law of Coordination: Relative Phase 174

The basic experiment, introduced by one of us [27,28], that 175

gave birth to coordination dynamics, the theory underly- 176

ing the coordination of movements, is easily demonstrated 177

and has become a classroom exercise for generations of 178

students: if a subject is moving the two index fingers in so- 179

called anti-phase, i. e. one finger is flexing while the other is 180

extending, and then the movement rate is increased, there 181

is a critical rate where the subject switches spontaneously 182

from the anti-phase movement to in-phase, i. e. both fin- 183

gers are now flexing and extending at the same time. On 184

the other hand, if the subject starts at a high or low rate 185

with an in-phase movement and the rate is slowed down 186

or sped up, no such transition occurs. 187

These experimental findings can be translated or 188

mapped into the language of dynamical systems theory as 189

follows [19]: 190

� At low movement rates the system has two stable at- 191

tractors, one representing anti-phase and one for in- 192

phase – in short: the system is bistable; 193
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Movement Coordination 3

� When the movement rate reaches a critical value, the194

anti-phase attractor disappears and the only possible195

stable movement pattern remaining is in-phase;196

� There is strong hysteresis: when the system is perform-197

ing in-phase and the movement rate is decreased from198

a high value, the anti-phase attractor may reappear but199

the system does not switch to it.200

In order to make use of dynamical systems theory for201

a quantitative description of the transitions in coordinated202

movements, one needs to establish a measure that allows203

for a formulation of a dynamical system that captures204

these experimental observations and can serve as a phe-205

nomenological model. Essentially, the finger movements206

represent oscillations (as will be discussed in more de-207

tail in Subsect. “Oscillators for LimbMovements”) each of208

which is described by an amplitude r and a phase '(t). For209

the easiest case of harmonic oscillations the amplitude r210

does not depend on time and the phase increases linearly211

with time at a constant rate !, called the angular veloc-212

ity, leading to '(t) D ! t. Two oscillators are said to be213

in the in-phase mode if the two phases are the same, or214

'1(t) � '2(t) D 0, and in anti-phase if the difference be-215

tween their two phases is 180ı or � radians. Therefore, the216

quantity that is most commonly used to model the exper-217

imental findings in movement coordination is the phase218

difference or relative phase219

�(t) D '1(t)�'2(t) D
(
�(t) D 0 for in-phase
�(t) D � for anti-phase :

(1)220

The minimal dynamical system for the relative phase221

that is consistent with observations is known as the222

Haken–Kelso–Bunz (or HKB) model and was first pub-223

lished in a seminal paper in 1985 [19]224

�̇ D �a sin� � 2b sin 2� with a; b � 0 : (2)225

As is the case for all one-dimensional first order differen-226

tial equations, (2) can be derived from a potential function227

�̇ D � dV(�)
d�

with V(�) D �a cos ��b cos 2�: (3)228

One of the two parameters a and b that appear in (2)229

and (3) can be eliminated by introducing a new time scale230

� D ˛t, a procedure known as scaling and commonly used231

within the theory of nonlinear differential equations, lead-232

ing to 233

�̇(t) D d�(t)
dt

! d�
�

�
˛

�
d �

˛

D �a sin �
� �
˛

�
� 2b sin 2�

� �
˛

�

˛
d�̃(�)
d�

D �a sin �̃(�) � 2b sin 2�̃(�)

(4) 234

where �̃ has the same shape as � , it is just changing on 235

a slower or faster time scale depending on whether ˛ is 236

bigger or smaller than 1. After dividing by ˛ and letting 237

the so far undetermined ˛ D a (4) becomes 238

d�̃
d�

D � a
˛„ƒ‚…
D1

sin �̃ � 2
b
˛„ƒ‚…

Dk

sin 2�̃ : (5) 239

Finally, by dropping the tilde ˜ (2) and (3) can be written 240

with only one parameter k D b
a in the form 241

�̇ D � sin � � 2k sin 2�

D � dV(�)
d�

with V(�) D � cos � � k cos 2� : (6) 242

The dynamical properties of the HKB model’s collec- 243

tive or coordinative level of description are visualized in 244

Fig. 1 with plots of the phase space (�̇ as a function of �) 245

in the top row, the potential landscapesV(�) in the second 246

row and the bifurcation diagram at the bottom. The con- 247

trol parameter k, as shown, is the ratio between b and a, 248

k D b
a , which is inversely related to the movement rate: 249

a large value of k corresponds to a slow rate, whereas k 250

close to zero indicates that the movement rate is high. 251

In the phase space plots (Fig. 1 top row) for k D 0:75 252

and k D 0:5 there exist two stable fixed points at � D 0 253

and � D � where the function crosses the horizontal axis 254

with a negative slope, marked by solid circles (the fixed 255

point at �� is the same as the point at � as the function is 256

2�-periodic). These attractors are separated by repellers, 257

zero crossings with a positive slope and marked by open 258

circles. For the movement rates corresponding to these 259

two values of k the model suggests that both anti-phase 260

and in-phase movements are stable. When the rate is in- 261

creased, corresponding to a decrease in the control param- 262

eter k down to the critical point at kc D 0:25 the former 263

stable fixed point at � D � collides with the unstable fixed 264

point and becomes neutrally stable indicated by a half- 265

filled circle. Beyond kc, i. e. for faster rates and smaller val- 266

ues of k the anti-phase movement is unstable and the only 267

remaining stable coordination pattern is in-phase. 268

The potential functions, shown in the second row in 269

Fig. 1, contain the same information as the phase space 270
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4 Movement Coordination

Movement Coordination, Figure 1
Dynamics of the HKB model at the coordinative, relative phase (�) level as a function of the control parameter k D b

a . Top row:
Phase space plots �̇ as a function of�.Middle: Landscapes of the potential function V(�). Bottom: Bifurcation diagram, where solid
lineswith filled circles correspond to stable fixed points (attractors) and dashed lineswith open circles denote repellers. Note that k
increases from right (k D 0) to left (k D 0:75)

portraits as they are just a different representation of the271

dynamics. However, the strong hysteresis is more intuitive272

in the potential landscape than in phase space, and can273

best be seen through an experiment that starts out with274

slow movements in anti-phase (indicated by the gray ball275

in the minimum of the potential at � D �) and increasing276

rate. After passing the critical value kc D 0:25 the slight-277

est perturbation will put the ball on the downhill slope278

and initiate a switch to in-phase. If the movement is now279

slowed down again, going from right to left in the plots,280

even though the minimum at � D � reappears, the ball281

cannot jump up and occupy it but will stay in the deep282

minimum at � D 0.283

Finally, a bifurcation diagram is shown at the bottom284

of Fig. 1, where the locations of stable fixed points for the285

relative phase � are plotted as solid lines with solid circles286

and unstable fixed points as dashed lines with open cir-287

cles. Around kc D 0:25 the system undergoes a subcritical288

pitchfork bifurcation. Note that the control parameter k in289

this plot increases from right to left.290

Evidently, the dynamical system represented by (2) is291

capable of reproducing the basic experimental findings292

listed above. From the viewpoint of theory, this is simply 293

one of the preliminaries for a model that have to be ful- 294

filled. In general, any model that only reproduces what is 295

built into it is not of much value. More important are cru- 296

cial experimental tests of the consequences and additional 297

phenomena that are predicted when the model is worked 298

through. Several such consequences and predictions will 299

be described in detail in the following sections. It is only 300

after such theoretical and experimental scrutiny that the 301

HKB model has come to qualify as an elementary law of 302

movement coordination. 303

Stability: Perturbations and Fluctuations 304

Random fluctuations, or noise for short, exist in all sys- 305

tems that dissipate energy. In fact, there exists a famous 306

theorem that goes back to Einstein, known as the dissipa- 307

tion-fluctuation theorem, which states that the amount of 308

random fluctuations in a system is proportional to its dis- 309

sipation of energy. There are effects from random noise on 310

the dynamics of relative phase that can be predicted from 311

theory both qualitatively and quantitatively, allowing for 312
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Movement Coordination 5

the HKB model’s coordination level to be tested experi-313

mentally. Later the individual component level will be dis-314

cussed.315

An essential difference between the dynamical systems316

approach to movement coordination and the motor pro-317

gram or internal model hypotheses is most distinct in re-318

gions where the coordination pattern undergoes a sponta-319

neous qualitative change as in the switch from anti-phase320

to in-phase in Kelso’s experiment. From the latter point321

of view, these switches simply happen, very much like in322

the automatic transmission of a car: whenever certain cri-323

teria are fulfilled, the transmission switches from one gear324

to another. It is easy to imagine a similar mechanism to325

be at work and in control of the transitions in movements:326

as soon as a certain rate is exceeded, the anti-phase pro-327

gram is somehow replaced by the in-phase module, which328

is about all we can say regarding the mechanism of switch-329

ing. On the other hand, by taking dynamic systems theory330

seriously, one can predict and test phenomena accompa-331

nying second-order phase transitions. Three of these phe-332

nomena, namely, critical slowing down, enhancement of333

fluctuations and critical fluctuations will be discussed here334

in detail.335

For a quantitative treatment it is advantageous to ex-336

pand �̇ and V(�) in (6) into Taylor series around the337

fixed point � D � and truncate them after the linear and338

quadratic terms, respectively339

�̇ D � sin � � 2k sin 2�
D �f�(� � �) C : : :g � 2kf2(� � �) C : : :g
� (1 � 4k)(� � �)

V (�) D � cos � � k cos 2�

D �f�1 C (� � �)2 C : : :g
� kf1 � 4(� � �)2 C : : :g

� 1 � k � (1 � 4k)(� � �)2 :

(7)340

A typical situation that occurs when a system ap-341

proaches and passes through a transition point is shown342

in Fig. 2. In the top row the potential function for � � 0343

is plotted (dashed line) together with its expansion around344

the fixed point � D � (solid). The bottom row consists of345

plots of time series showing how the fixed point is or is346

not approached when the system is initially at � D � C�.347

The phenomena accompanying second-order phase tran-348

sitions in a system that contains random fluctuations can349

be best described by Fig. 2.350

Critical slowing down corresponds to the time it takes351

the system to recover from a small perturbation �. In352

the vicinity of the fixed point the dynamics can be de-353

scribed by the linearization of the nonlinear equation354

around the fixed point (7). Such a linear equation can 355

be readily solved leading to 356

�(t) D � C�e(1�4k)t : 357

As long as k is larger than its critical value kc D 0:25 358

the exponent is negative and a perturbation will de- 359

cay exponentially in time. However, as the system 360

approaches the transition point, this decay will take 361

longer and longer as shown in the bottom row in Fig. 2. 362

At the critical parameter k D 0:25 the system will no 363

longer return to the former stable fixed point and be- 364

yond that value it will even move away from it. In 365

the latter parameter region the linear approximation 366

is no longer valid. Critical slowing down can be and 367

has been tested experimentally by perturbing a coor- 368

dination state and measuring the relaxation constant 369

as a function of movement rate prior to the transition. 370

The experimental findings [31,44,45] are in remark- 371

able agreement with the theoretical predictions of co- 372

ordination dynamics. 373

Enhancement of fluctuations is to some extent the 374

stochastic analog to critical slowing down. The ran- 375

dom fluctuations that exist in all dissipative systems 376

are a stochastic force that kicks the system away from 377

the minimum and (on average) up to a certain eleva- 378

tion in the potential landscape, indicated by the shaded 379

areas in Fig. 2. For large values of k the horizontal ex- 380

tent of this area is small but becomes larger and larger 381

when the transition point is approached. Assuming 382

that the strength of the random force does not change 383

with the control parameter, the standard deviation of 384

the relative phase is a direct measure of this enhance- 385

ment of fluctuations and will be increasing when the 386

control parameter is moving towards its critical value. 387

Again experimental tests are in detailed agreement 388

with the stochastic version of the HKMmodel [30,44]. 389

Critical fluctuations can induce transitions even when 390

the critical value of the control parameter has not been 391

reached. As before, random forces will kick the sys- 392

tem around the potential minimum and up to (on av- 393

erage) a certain elevation. If this height is larger than 394

the hump it has to cross, as is the case illustrated in 395

Fig. 2 for k D 0:5, a transition will occur, even though 396

the fixed point is still classified as stable. In excellent 397

agreement with theory, such critical fluctuations were 398

observed in the original experiments by Kelso and col- 399

leagues and have been found in a number of related 400

experimental systems [31,42]. 401

All these hallmarks point to the conclusion that transi- 402

tions in movement coordination are not simply a switch- 403
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6 Movement Coordination

Movement Coordination, Figure 2
Hallmarks of a system that approaches a transition point: enhancement of fluctuations, indicated by the increasing size of the shaded
area; critical slowing down shown by the time it takes for the system to recover from a perturbation (bottom); critical fluctuations
occur where the top of the shaded area is higher than the closest maximum in the potential, initiating a switch even though the
system is still stable

ing of gears but take place in a well defined way via the404

instability of a former stable coordination state. Such phe-405

nomena are also observed in systems in physics and other406

disciplines where in situations far from thermal equilib-407

rium macroscopic patterns CE2 emerge or change, a pro-408

cess termed self-organization. A general theory of self-or-409

ganizing systems, called synergetics [17,18], was formu-410

lated by Hermann Haken in the early 1970s.411

The Oscillator Level412

The foregoing description and analysis of bimanualmove-413

ment coordination takes place on the coordinative or col-414

lective level of relative phase. Looking at an actual experi-415

ment, there are two fingers moving back and forth and one416

may ask whether it is possible to find a model on the level417

of the oscillatory components from which the dynamics418

of the relative phase can then be derived. The challenge419

for such an endeavor is at least twofold: first, one needs420

a dynamical system that accurately describes the move-421

ments of the individual oscillatory components (the fin-422

gers). Second, one must find a coupling function for these423

components that leads to the correct relation for the rela-424

tive phase (2).425

Oscillators for Limb Movements426

In terms of oscillators there is quite a variety to choose427

from as most second order systems of the form428

ẍ C � ẋ C !2x C N(x; ẋ) D 0 (8)429

are potential candidates. Here ! is the angular frequency,430

� the linear damping constant and N(x; ẋ) is a function431

containing nonlinear terms in x and ẋ.432

Best known andmost widely used are the harmonic os- 433

cillators, where N(x; ẋ)D0, in particular for the case with- 434

out damping �D0. In the search for a model to describe 435

human limb movements, however, harmonic oscillators 436

are not well suited, because they do not have stable limit 437

cycles. The phase space portrait of an harmonic oscillator 438

is a circle (or ellipse), but only if it is not perturbed. If such 439

a system is slightly kicked off the trajectory it is moving on, 440

it will not return to its original circle but continue to move 441

on a different orbit. In contrast, it is well known that if 442

a rhythmic human limb movement is perturbed, this per- 443

turbation decreases exponentially in time and the move- 444

ment returns to its original trajectory, a stable limit cycle, 445

which is an object that exists only for nonlinear oscilla- 446

tors [26,45]. 447

Obviously, the amount of possible nonlinear terms to 448

choose from is infinite and at first sight, the task to find the 449

appropriate ones is like looking for a needle in a haystack. 450

However, there are powerful arguments that can be made 451

from both, theoretical reasoning and experimental find- 452

ings, that restrict the nonlinearities, as we shall see, to only 453

two. First, we assume that the function N(x; ẋ) takes the 454

form of a polynomial in x and ẋ and that this polynomial 455

is of the lowest possible order. So the first choice would 456

be to assume that N is quadratic in x and ẋ leading to an 457

oscillator of the form 458

ẍ C � ẋ C !2x C ax2 C bẋ2 C cxẋ D 0 : (9) 459

How do we decide whether (9) is a good model for rhyth- 460

mic fingermovements? If a finger is moved back and forth, 461

that is, performs an alternation between flexion and exten- 462

sion, then this process is to a good approximation symmet- 463

ric: flexion is the mirror image of extension. In the equa- 464

tions a mirror operation is carried out by substituting x 465
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Movement Coordination 7

by �x, and, in doing so, the equation of motion must not466

change for symmetry to be preserved. Applied to (9) this467

leads to468

� ẍ C � (�ẋ) C !2(�x) C a(�x)2 C b(�ẋ)2

C c(�x)(�ẋ) D 0

� ẍ � � ẋ � !2x C ax2 C bẋ2 C cxẋ D 0

ẍ C � ẋ C !2x � ax2 � bẋ2 � cxẋ D 0

(10)469

where the last equation in (10) is obtained by multiplying470

the second equation by � 1. It is evident that this equa-471

tion is not the same as (9). In fact, it is only the same if472

a D b D c D 0, which means that there must not be any473

quadratic terms in the oscillator equation if one wants474

to preserve the symmetry between flexion and extension475

phases of movement. The argument goes even further:476

N(x; ẋ) must not contain any terms of even order in x and477

ẋ as all of them, like the quadratic ones, would break the478

required symmetry. It is easy to convince oneself that as479

far as the flexion-extension symmetry is concerned all odd480

terms in x and ẋ are fine.481

There are four possible cubic terms, namely ẋ3, ẋx2,482

xẋ2 and x3 leading to a general oscillator equation of the483

form484

ẍ C � ẋ C!2x C ıẋ3 C �ẋx2 C ax3 C bxẋ2 D 0 : (11)485

The effects that these nonlinear terms exert on the oscilla-486

tor dynamics can be best seen by rewriting (11) as487

ẍ C ẋf� C �x2 C ıẋ2„ ƒ‚ …
damping

g C xf!2 C ax2 C bẋ2„ ƒ‚ …
frequency

g D 0 (12)488

which shows that the terms ẋ3 and ẋx2 are position and489

velocity dependent changes to the damping constant � ,490

whereas the nonlinearities x3 and xẋ2 mainly influence the491

frequency. As the nonlinear terms were introduced to ob-492

tain stable limit cycles and the main interest is in ampli-493

tude and not frequency, we will let a D b D 0, which re-494

duces the candidate oscillators to495

ẍ C ẋf� C �x2 C ıẋ2g C !2x D 0 : (13)496

Nonlinear oscillators with either ıD0 or �D0 have been497

studied for a long time and have been termed in the litera-498

ture as van-der-Pol and Rayleigh oscillator, respectively.499

Systems of the form (13) only show sustained oscilla-500

tions on a stable limit cycle within certain ranges of the501

parameters, as can be seen easily for the van-der-Pol oscil-502

lator, given by (13) with ı D 0503

ẍ C ẋf� C �x2„ ƒ‚ …
�̃

g C !2x D 0 : (14)504

The underbraced term in (14) represents the effective 505

damping constant, �̃ , now depending on the square of the 506

displacement, x2, a quantity which is non-negative. For the 507

parameters � and � one can distinguish the following four 508

cases: 509

� > 0; � > 0 The effective damping �̃ is always positive. 510

The trajectories are evolving towards the origin, which 511

is a stable fixed point. 512

� < 0; � < 0 The effective damping �̃ is always negative. 513

The system is unstable and the trajectories are evolving 514

towards infinity. 515

� > 0; � < 0 For small values of the amplitude x2 the ef- 516

fective damping �̃ is positive leading to even smaller 517

amplitudes. For large values of x2 the effective damp- 518

ing �̃ is negative leading to a further increase in ampli- 519

tude. The system evolves either towards the fixed point 520

or towards infinity depending on the initial conditions. 521

� < 0; � > 0 For small values of the amplitude x2 the ef- 522

fective damping �̃ is negative leading to an increase in 523

amplitude. For large values of x2 the effective damping 524

�̃ is positive and decreases the amplitude. The system 525

evolves towards a stable limit cycle. 526

The main features for the van-der-Pol oscillator are 527

shown in Fig. 3 with the time series (left), the phase space 528

portrait (middle) and the power spectrum (right). The 529

time series is not a sine function but has a fast rising in- 530

creasing flank and a more shallow slope on the decreasing 531

side. Such time series are called relaxation oscillations. The 532

trajectory in phase space is closer to a rectangle than to 533

a circle and the power spectrum shows pronounced peaks 534

at the fundamental frequency ! and its odd higher har- 535

monics (3!; 5!; : : :). 536

In contrast to the van-der-Pol case the damping con- 537

stant �̃ for the Rayleigh oscillator, the case � D 0 in (13), 538

depends on the square of the velocity ẋ2. Arguments 539

similar to those above lead to the conclusion that the 540

Rayleigh oscillator shows sustained oscillations for param- 541

eters � < 0 and ı > 0. 542

As shown in Fig. 4 the time series and trajectories of 543

the Rayleigh oscillator also exhibit relaxation behavior, but 544

in this case with a slow rise and fast drop. As for the 545

van-der-Pol, the phase space portrait is almost rectangu- 546

lar but the long and short axes are switched. Again the 547

power spectrum has peaks at the fundamental frequency 548

and contains odd higher harmonics. 549

Evidently, taken by themselves neither the van-der-Pol 550

nor Rayleigh oscillators are good models for human limb 551

movement for at least two reasons, even though they ful- 552

fill one requirement for a model: they have stable limit cy- 553

cles. First, human limb movements are almost sinusoidal 554

Armin
Cross-Out

Armin
Note
oscillators

AF
Highlight

AF
Highlight

AF
Highlight

AF
Highlight



Unc
or

re
cte

d 
Pro

of

20
08

-0
8-

22

��

Meyers: Encyclopedia of Complexity and Systems Science — Entry 803 — 2008/8/22 — 13:13 — page 8 — le-tex
��

�� ��

8 Movement Coordination

Movement Coordination, Figure 3
The van-der-Pol oscillator: time series (left), phase space trajectory (middle) and power spectrum (right)

and their trajectories have a circular or elliptical shape.555

Second, it has also been found in experiments with hu-556

man subjects performing rhythmic limb movements that557

when the movement rate is increased the amplitude of the558

movement decreases linearly with frequency [25]. It can be559

shown that for the van-der-Pol oscillator the amplitude is560

independent of frequency and for the Rayleigh it decreases561

proportional to !�2, both in disagreement with the exper-562

imental findings.563

It turns out that a combination of the van-der-Pol564

and Rayleigh oscillator, termed the hybrid oscillator of the565

form (13) fulfills all the above requirements if the parame-566

ters are chosen as � < 0 and � � ı > 0.567

As shown in Fig. 5 the time series for the hybrid oscilla-568

tor is almost sinusoidal and the trajectory is elliptical. The569

power spectrum has a single peak at the fundamental fre-570

quency. Moreover, the relation between the amplitude and571

frequency is a linear decrease in amplitude when the rate is572

increased as shown schematically in Fig. 6. Taken together,573

the hybrid oscillator is a good approximation for the tra-574

jectories observed experimentally in human limb move-575

ments.576

The Coupling577

As pointed out already, in a second step one has to find578

a coupling function between two hybrid oscillators that579

leads to the correct dynamics for the relative phase (2).580

The most common realization of a coupling between581

two oscillators is a spring between two pendulums, lead-582

ing to a force proportional to the difference in locations583

f12 D k[x1(t) � x2(t)]. It can easily be shown, that such584

a coupling does not lead to the required dynamics on585

the relative phase level. In fact, several coupling terms586

have been suggested that do the trick, but none of them587

is very intuitive. The arguably easiest form, which is one588

of the possible couplings presented in the original HKB589

model [19], is given by590

f12 D (ẋ1 � ẋ2)
˚
˛ C ˇ(x1 � x2)2

�
: (15)591

Combined with two of the hybrid oscillators, the dynami- 592

cal system that describes the transition from anti-phase to 593

in-phase in bimanual finger movements takes the form 594

ẍ1 C ẋ1
�
� C �x21 C ıẋ21

� C !2x1
D (ẋ1 � ẋ2)

˚
˛ C ˇ(x1 � x2)2

�
ẍ2 C ẋ2

�
� C �x22 C ıẋ22

� C !2x2
D (ẋ2 � ẋ1)

˚
˛ C ˇ(x2 � x1)2

�
:

(16) 595

A numerical simulation of (16) is shown in Fig. 7. In 596

the top row the amplitudes x1 and x2 are plotted as a func- 597

tion of time. The movement starts out in anti-phase at 598

! D 1:4 and the frequency is continuously increased to 599

a final value of ! D 1:8. At a critical rate !c the anti- 600

phase pattern becomes unstable and a transition to in- 601

phase takes place. At the bottom a point estimate of the 602

relative phase �(t) is shown calculated as 603

�(t) D '1(t) � '2(t) D arctan
ẋ1
x1

� arctan
ẋ2
x2
: (17) 604

The relative phase changes from a value of � during the 605

anti-phase movement to � D 0 when the in-phase pattern 606

has been established. 607

To derive the phase relation (2) from (16) is a little 608

lengthy but straightforward by using the ansatz (hypoth- 609

esis) 610

xk(t) D Ak(t)ei! t C A�
k(t)e

�i! t (18) 611

then calculating the derivatives and inserting them 612

into (16). Then the slowly varying amplitude approxima- 613

tion (Ȧ(t) � !) and rotating wave approximation (ne- 614

glect all frequencies> !) are applied. Finally, introducing 615

the relative phase � D '1 � '2 after writing Ak(t) in the 616

form 617

Ak(t) D r ei'k (t) (19) 618

leads to a relation for the relative phase � of the form (2) 619

from which the parameters a and b can be readily found 620
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Movement Coordination 9

Movement Coordination, Figure 4
The Rayleigh oscillator: time series (left), phase space trajectory (middle) and power spectrum (right)

Movement Coordination, Figure 5
The hybrid oscillator: time series (left), phase space trajectory (middle) and power spectrum (right)

Movement Coordination, Figure 6
Amplitude-frequency relation for the van-der-Pol (dotted),
Rayleigh (� !�2, dashed) and hybrid (� �!, solid) oscillator

in terms of the parameters that describe the oscillators and621

their coupling in (16)622

623

a D �˛ � 2ˇr2 ; b D 1
2
ˇr2624

with r2 D �� C ˛(1 � cos �)
� C 3ı!2 � 2ˇ(1 � cos �)2

: (20)625

626

Breaking and Restoring Symmetries627

Symmetry Breaking Through the Components628

For simplicity, the original HKB model assumes on both629

the oscillator and the relative phase level that the two coor-630

dinating components are identical, like two index fingers. 631

As a consequence, the coupled system (16) has a symme- 632

try: it stays invariant if we replace x1 by x2 and x2 by x1. For 633

the coordination between two limbs that are not the same 634

like an arm and a leg, this symmetry no longer exists – it is 635

said to be broken. In terms of the model, the main differ- 636

ence between an arm and a leg is that they have different 637

eigenfrequencies, so the oscillator frequencies! in (16) are 638

no longer the same but become !1 and !2. This does not 639

necessarily mean that during the coordination the compo- 640

nents oscillate at different frequencies; they are still cou- 641

pled, and this coupling leads to a common frequency ˝ , 642

at least as long as the eigenfrequency difference is not too 643

big. But still, a whole variety of new phenomena originates 644

from such a breaking of the symmetry between the com- 645

ponents [5,22,23,29,37]. 646

As mentioned in Subsect. “The Coupling” the dynam- 647

ics for the relative phase can be derived from the level of 648

coupled oscillators (16) for the case of the same eigenfre- 649

quencies. Performing the same calculations for two oscil- 650

lators with frequencies !1 and !2 leads to an additional 651

term in (2), which turns out to be a constant, commonly 652

called ı!. With this extension the equation for the relative 653

phase reads 654

655

�̇ D ı! � a sin � � 2b sin 2� 656

with ı! D !2
1 � !2

2
˝

� !1 � !2 : (21) 657
658
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10 Movement Coordination

Movement Coordination, Figure 7
Simulation of (16) where the frequency ! is continuously increased from ! D 1:4 on the left to ! D 1:8 on the right. Top: time
series of the amplitudes x1 and x2 undergoing a transition from anti-phase to in-phase when ! exceeds a critical value. Bottom:
Point estimate of the relative phase � changing from an initial value of � during anti-phase to 0 when the in-phase movement is
established. Parameters: � D �0:7, � D ı D 1, ˛ D �0:2,ˇ D 0:2, and! D 1:4 to 1:8

The exact form for the term ı! turns out to be the dif-659

ference of the squares of the eigenfrequencies divided by660

the rate˝ the oscillating frequency of the coupled system,661

which simplifies to !1 � !2 if the frequency difference is662

small. As before (21) can be scaled, which eliminates one663

of the parameters, and �̇ can be derived from a potential664

function665

�̇ D ı! � sin� � 2k sin 2�

D dV(�)
d�

with V(�) D �ı! � � cos� � k cos 2� :

(22)666

Plots of the phase space and the potential landscape for667

different values of k and ı! are shown in Figs. 8 and 9, re-668

spectively. From these figures it is obvious that the symme-669

try breaking leads to a vertical shift of the curves in phase670

space and a tilt in the potential functions, which has sev-671

eral important consequences for the dynamics. First, for672

a nonvanishing ı! the stable fixed points for the relative673

phase are no longer located at � D 0 and � D ˙� but are674

now shifted (see Fig. 8). The amount of this shift can be675

calculated for small values of ı! and new locations for the676

stable fixed points are given by677

�(0) D ı!

1 C 4k
and �(�) D � � ı!

1 � 4k
: (23)678

Second, for large enough values of ı! not only the fixed679

point close to � D � becomes unstable but also the in-680

phase pattern loses stability undergoing a saddle node bi-681

furcation as can be seen in the bottom row in Fig. 8. Be-682

yond this point there are no stable fixed points left and683

the relative phase will not settle down at a fixed value any- 684

more but exhibit phase wrapping. However, this wrapping 685

does not occur with a constant angular velocity, which can 686

best be seen in the plot on the bottom right in Fig. 9. As 687

the change in relative phase �̇ is the negative derivative of 688

the potential function, it is given by the slope. This slope 689

is large and almost constant for negative values of � , but 690

for small positive values, where the in-phase fixed point 691

was formerly located, the slope becomes less steep indicat- 692

ing that � changes more slowly in this region before the 693

dynamics picks up speed again when approaching � . So 694

even as the fixed point has disappeared the dynamics still 695

shows reminiscence of its former existence. 696

The dynamics of relative phase for the case of differ- 697

ent eigenfrequencies from a simulation of (22) in shown 698

in Fig. 10. Starting out at a slow movement rate on the 699

left, the system settles into the fixed point close to � D � . 700

When the movement rate is continuously increased, the 701

fixed point drifts upwards. At a first critical point a transi- 702

tion to in-phase takes place, followed by another drift, this 703

time for the fixed point representing the in-phase move- 704

ment. Finally, this state also looses stability and the relative 705

phase goes into wrapping. Reminiscence in the phase re- 706

gions of the former fixed point are still visible by a flatten- 707

ing of the slope around � �> 0.With a further increase of 708

the movement rate the function approaches a straight line. 709

The third consequence of this symmetry breaking is 710

best described using the potential function for small values 711

of ı! compared to the symmetric case ı! D 0. For the lat- 712

ter, when the system is initially in anti-phase � D � and k 713

is decreased through its critical value a switch to in-phase 714

takes place as was shown in Fig. 1 (middle row). However, 715
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Movement Coordination 11

Movement Coordination, Figure 8
Phase space plots for different values of the control parameters k and ı!. With increasing asymmetry (top to bottom) the functions
are shifted more and more upwards leading to an elimination of the fixed points near� D �� and� D 0 via saddle node bifurca-
tions at k D 0:5 for small ı! and k D 0:25 for ı! large, respectively

Movement Coordination, Figure 9
Potential landscape for different values of the control parameters k andı!. With increasing asymmetry (top to bottom) the functions
get more and more tilted, destabilizing the system up to a point where there are no fixed points left on the bottom right. However,
remnants of the fixed point can still be seen as changes in the curvature of the potential

the ball there does not necessarily have to roll to the left716

towards � D 0 but with the same probability could roll to717

the right ending up in the minimum that exists at � D 2�718

and also represents an in-phase movement. Whereas the719

eventual outcome is the same because due to the periodic-720

ity � D 0 and � D 2� are identical, the two paths can very 721

well be distinguished. The curve in Fig. 7 (bottom), show- 722

ing the point estimate of the relative phase during a tran- 723

sition, goes from � D � down to � D 0, but could, in fact 724

with the same probability, go up towards � D 2� . In con- 725
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12 Movement Coordination

Movement Coordination, Figure 10
Relative phase � as a function of time. Shown is a 4-� plot of a simulation of (22) for ı! D 1:7 where the control parameter k is
continuously decreased from k D 2 on the left to k D 0 on the right. The system settles close to anti-phase and the fixed point drifts
as k is decreased (corresponding to a faster period of oscillation). At a first critical value a transition to in-phase takes place followed
by another fixed point drift. Finally, the in-phase fixed point disappears and the phase starts wrapping

trast, if the eigenfrequencies are different, also the points726

�� and � , and 0 and 2� are no longer the same. If the727

system is in anti-phase at � D � and k is decreased, it is728

evident from the middle row in Fig. 9 that a switch will729

not take place towards the left to � � 0, as the dynam-730

ics would have to climb over a potential hill to do so. As731

there are random forces acting on the dynamics a switch732

to � � 0 will still happen from time to time, but it is not733

equally probable to a transition to � � 2� , and it becomes734

even more unlikely with increasing ı!.735

These consequences, theoretically predicted to occur736

when the symmetry between the oscillating components is737

broken, can and have been tested, and have been found to738

be in agreement with the experimental results [21,29].739

Asymmetry in the Mode of Coordination740

Even though (16) is symmetric in the coordinating com-741

ponents it can only describe a transition from anti-phase742

to in-phase but not the other way around. Equation (16)743

is highly asymmetric with respect to coordination mode.744

This can be seen explicitly when we introduce variables745

that directly reflect modes of coordination746

 C D x1 C x2 and  � D x1 � x2 : (24)747

For an in-phase movement we have x1 Dx2 and  �748

vanishes, whereas for anti-phase x1D�x2 and therefore749

 C D 0. We can now derive the dynamics in the variables750

 C and  � by expressing the original displacements as751

x1 D 1
2
( C C  �) and x2 D 1

2
( C �  �) (25)752

and inserting them into (16), which leads to 753

 ̈C C � ̇C C !2 C C �

12
d
dt

�
 3C C 3 C 2�

�
C ı

4
�
 ̇3C C 3 ̇C ̇2�

� D 0

 ̈� C � ̇� C !2 � C �

12
d
dt

�
 3� C 3 � 2C

�
C ı

4
�
 ̇3� C 3 ̇� ̇2C

�
D 2 ̇�

�
˛ C ˇ 2�

�
:

(26) 754

The asymmetry between in-phase and anti-phase is evi- 755

dent from (26), as the right-hand side of the first equation 756

vanishes and the equation is even independent of the cou- 757

pling parameters ˛ and ˇ. This is the reason that the origi- 758

nal HKB model only shows transitions from anti-phase to 759

in-phase and not vice versa. 760

Transitions to Anti-phase 761

In 2000 Carson and colleagues [6] published results from 762

an experiment in which subjects performed bimanual 763

pronation-supination movements paced by a metronome 764

of increasing rate (see also [2]). In this context an anti- 765

phase movement corresponds to the case where one arm 766

performs a pronation while the other arm is supinat- 767

ing. Correspondingly, pronation and supination with both 768

arms at the same time represents in-phase. In their exper- 769

iment Carson et al. used a manipulandum that allowed for 770

changing the axis of rotation individually for both arms as 771

shown in Fig. 11a.With increasing movement rate sponta- 772

neous transitions from anti-phase to in-phase, but not vice 773

versa, were found when the subjects performed prona- 774

tion-supinationmovements around the same axes for both 775

arms. In trials where one arm was rotating around the axis 776
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Movement Coordination 13

above the hand and the other around the one below, anti-777

phase was found to be stable and the in-phase movement778

underwent a transition to anti-phase as shown for repre-779

sentative trials in Fig. 12.780

It is evident that the HKB model in neither its orig-781

inal form (2) nor the mode formulation (26) is a valid782

model for these findings. However, Fuchs and Jirsa [11]783

showed that by starting from the mode description (26)784

it is straight forward to extend HKB such that, depend-785

ing on an additional parameter � , either the in-phase or786

the anti-phase mode is a stable movement pattern at high787

rates. The additional parameter corresponds to the relative788

locations of the axes of rotation in the Carson et al. exper-789

iment which can be defined in its easiest form as790

� D jl1 � l2j
L

(27)791

where l1, l2 and L are as shown in Fig. 11b. In fact, any792

monotonic function f with f (0) D 0 and f (1) D 1 is com-793

patible with theory and its actual shape has to be deter-794

mined experimentally.795

By looking at the mode Eqs. (26) it is clear that sub-796

stitution  C !  � and  � !  C to the left-hand side797

of the first equation leads to the left-hand side of the sec-798

ond equation and vice versa. For the terms on the right-799

hand side representing the coupling this is obviously not800

the case. Therefore, we now introduce a parameter � and801

additional terms into (26) such that for � D 0 these equa-802

tions remain unchanged, whereas for � D 1 we obtain (26)803

with all C and � subscripts reversed804

 ̈C C � ̇C C !2 C C �

12
d
dt

�
 3C C 3 C 2�

�
C ı

4
�
 ̇3C C 3 ̇C ̇2�

� D 2� ̇C
�
˛ C ˇ 2C

�
 ̈� C � ̇� C !2 � C �

12
d
dt

�
 3� C 3 � 2C

�
C ı

4
�
 ̇3� C 3 ̇� ̇2C

� D 2(1 � �) ̇�
�
˛ C ˇ 2�

�
:

(28)805

From (28) it is straight forward to go back to the rep-806

resentation of the finger oscillators807

ẍ1 C : : : D 1
2

�
 ̈C C  ̈�

� C : : :

D  ̇�
�
˛ C ˇ 2�

� C �
˚
 ̇C

�
˛ C ˇ 2C

�
�  ̇�

�
˛ C ˇ 2�

��
ẍ2 C : : : D 1

2
�
 ̈C �  ̈�

� C : : :

D � ̇�
�
˛ C ˇ 2�

� C �
˚
 ̇C

�
˛ C ˇ 2C

�
C  ̇�

�
˛ C ˇ 2�

� �

(29)808

where the left-hand side which represents the oscillators 809

has been written only symbolically as all we are dealing 810

with is the coupling on the right. Replacing the mode am- 811

plitudes  C and  � in (29) using (24) one finds the gen- 812

eralized coupling as a function of x1 and x2 813

ẍ1 C : : : D (ẋ1 � ẋ2)
˚
˛ C ˇ(x1 � x2)2

�
C 2�

˚
˛ẋ2 C ˇ

�
ẋ2

�
x21 C x22

� C 2ẋ1x1x2
��

ẍ2 C : : : D (ẋ2 � ẋ1)
˚
˛ C ˇ(x2 � x1)2

�
C 2�

˚
˛ẋ1 C ˇ

�
ẋ1

�
x21 C x22

� C 2ẋ2x1x2
��
:

(30) 814

Like the original oscillator Eq. (16), Eq. (30) is invariant 815

under the exchange of x1 and x2 but in addition allows for 816

transitions from in-phase to anti-phase coordination if the 817

parameter � is chosen appropriately (� D 1, for instance), 818

as shown in Fig. 14. 819

As the final step, an equation for the dynamics of rel- 820

ative phase can be obtained from (30) by performing the 821

same steps as before, which leads to a modified form of the 822

HKB equation (2) 823

�̇ D �(1 � 2�)a sin � � 2b sin 2� (31) 824

and the corresponding potential function 825

826

�̇ D � dV(�)
d�

827

with V(�) D �(1 � 2�)a cos� � b cos 2� : (32) 828
829

Both equations can be scaled again leading to 830

�̇ D �(1 � 2�) sin� � 2k sin 2�

D dV(�)
d�

with

V (�) D �(1 � 2�) cos � � k cos 2� :

(33) 831

The landscapes of the potential for different values of 832

the control parameters k and � are shown in Fig. 15. The 833

left column exhibits the original HKB case which is ob- 834

tained for � D 0. The functions in the most right column, 835

representing the situation for � D 1, are identical in shape 836

to the � D 0 case, simply shifted horizontally by a value 837

of � . These two extreme cases are almost trivial and were 838

the ones originally investigated in the Carson et al. exper- 839

iment with the axes of rotation either on the same side or 840

on opposite sides with respect to the hand. As the cor- 841

responding potential functions are shifted by � with re- 842

spect to each other, one could assume that for an inter- 843

mediate value of � between 0 and 1 the functions are also 844

shifted, just by a smaller amount. Such horizontal trans- 845

lations lead to fixed point drifts, as has been seen before 846
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14 Movement Coordination

Movement Coordination, Figure 11
Manipulandum used by Carson and colleagues [6]. a The original apparatus that allowed for variation in axis of rotation above,
below and in the middle of the hand. b The axis of rotation can be changed continuously, allowing us to introduce a parameter � as
a quantitative measure for the relative locations of the axes

Movement Coordination, Figure 12
Relative phase over time for two representative trials from the Carson et al. experiment. Left: the axis of rotation is below the hand
for both arms and a switch from anti-phase to in-phase occurs as the movement speeds up. Right: with one axis above and the other
below the hand, the in-phasemovement becomes unstable at higher rates leading to a transition to anti-phase

for oscillation components with different eigenfrequen-847

cies. The theory, however, predicts that this is not the case.848

In fact, for � D 0:5 theory predicts that the two coordi-849

nation modes in-phase and anti-phase are equally stable850

for all movement rates. The deep minima for slow rates851

indicate high stability for both movement patterns and as852

the rate increases both minima become more and more853

shallow, i. e. both movement patterns become less stable.854

Eventually, for high rates at k D 0 the potential is entirely855

flat, which means that there are no attractive states what-856

soever. Pushed only by the stochastic forces in the system,857

the relative phase will now undergo a random walk. Note858

that this is very different from the phase wrapping en-859

countered before where the phase was constantly increas-860

ing due to the lack of an attractive state. Here the relative861

phase will move back and forth in a purely random fash-862

ion, known in the theory of stochastic systems as Brown- 863

ian motion. Again experimental evidence exists from the 864

Carson group that changing the distance between the axes 865

of rotation gradually leads to the phenomena predicted by 866

theory. 867

Conclusions 868

The theoretical framework outlined above represents the 869

core of the dynamical systems approach to movement co- 870

ordination. Rather than going through the large variety 871

of phenomena that coordination dynamics and the HKB 872

model have been applied to, emphasis has been put on 873

a detailed description of the close connection between the- 874

oretical models and experimental results.Modeling the co- 875

ordination of movement as dynamical systems on both 876

AF
Highlight

AF
Highlight

AF
Highlight

AF
Highlight

AF
Highlight



Unc
or

re
cte

d 
Pro

of

20
08

-0
8-

22

��

Meyers: Encyclopedia of Complexity and Systems Science — Entry 803 — 2008/8/22 — 13:13 — page 15 — le-tex
��

�� ��

Movement Coordination 15

Movement Coordination, Figure 13
Simulation of (28) for � D 0 (top) and � D 1 (bottom) where the frequency! is continuously increased from! D 1:4 on the left to
! D 1:8 on the right. Time series of the mode amplitudes 

C

(black) and 
�

(gray) undergoing transitions from anti-phase to in-
phase (top) and from in-phase to anti-phase (bottom) when! exceeds a critical value. Parameters:� D �0:7, � D ı D 1,˛ D �0:2,
ˇ D 0:2, and! D 1:4 to 1:8

Movement Coordination, Figure 14
Simulation of (30) where the frequency ! is continuously increased from ! D 1:4 on the left to ! D 1:8 on the right. Top: time
series of the amplitudes x1 and x2 undergoing a transition from in-phase to anti-phase when ! exceeds a critical value. Bottom:
Point estimate of the relative phase� changing from an initial value of 0 during the in-phase to � when the anti-phase movement
is established. Parameters: � D �0:7, � D ı D 1,˛ D �0:2,ˇ D 0:2, � D 1 and! D 1:4 to 1:8

the mesoscopic level of the component oscillators and the877

macroscopic level of relative phase allowed for quantita-878

tive predictions and experimental tests with an accuracy879

that is unprecedented in the life sciences, a field where880

most models are qualitative and descriptive.881

Extensions of the HKBModel882

Beyond the phenomena described above, the HKB model883

has been extended in various ways. Some of these exten-884

sions (by no mean exhaustive) are listed below with a very885

brief description; the interested reader is referred to the886

literature for details.887

� The quantitative description of the influence of noise 888

on the dynamics given in Sect. “Stability: Perturbations 889

and Fluctuations” can be done in a quantitative fash- 890

ion by adding a stochastic term to (2) [40,43] or its 891

generalizations (21) and (31) [11] and treating them as 892

Langevin equations within the theory of stochastic sys- 893

tems (see e. g. [16] for stochastic systems). In this case 894

the system is no longer described by a single time se- 895

ries for the relative phase but by a probability distribu- 896

tion function. How such distributions evolve in time is 897

then given by the corresponding Fokker–Planck equa- 898

tion and allows for a quantitative description of the 899
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16 Movement Coordination

Movement Coordination, Figure 15
Potential landscape for different values of the control parameters k and �

stochastic phenomena such as enhancement of fluctu-900

ations and critical fluctuations. An important quantity901

that can be derived in this context and is also related to902

the critical fluctuations is the mean-first-passage time,903

which is the time it takes (on average) to move over904

a hump in the potential function.905

� When subjects flex a single finger between the beats906

of a metronome, i. e. syncopate with the stimulus, and907

the metronome rate is increased, they switch sponta-908

neously to a coordination pattern where they flex their909

finger on the beat, i. e. synchronize with the stimulus.910

This so-called syncopation-synchronization paradigm911

introduced by Kelso and colleagues [32] has been fre-912

quently used in brain-imaging experiments.913

� A periodic pattering CE3 in the time series of the rel-914

ative phase was found experimentally in the case of915

broken symmetry by Schmidt et al. [41] and suc-916

cessfully derived from the oscillator level of the HKB917

model [12,14].918

� The metronome pacing can be explicitly included919

into (2) and its generalizations [24]. This so-called920

parametric driving allows us to explain effects in the921

movement trajectory known as anchoring, i. e. the922

variability of the movement is smaller around the923

metronome beat compared to other regions in phase 924

space [10]. With parametric driving the HKB model 925

alsomakes correct predictions for the stability of multi- 926

frequency coordination, where the metronome cycle 927

is half of the movement cycle, i. e. there is a beat at 928

the points of maximum flexion and maximum ex- 929

tension [1]. There are effects from more complicated 930

polyrhythms that have been studied [38,39,47]. 931

� The effect of symmetry breaking has been studied in- 932

tensively in experiments where subjects were swinging 933

pendulums with different eigenfrequencies [8,37,46]. 934

� Transitions are also found in trajectory formation, for 935

instance when subjects move their index finger such 936

that they draw an “8” and this movement is sped up 937

the pattern switches to a “0” [3,4,9]. 938

Future Directions 939

One of the most exciting applications of movement co- 940

ordination and its spontaneous transitions in particular 941

is that they open a new window for probing the hu- 942

man brain, made possible by the rapid development of 943

brain-imaging technologies that allow for the recording 944

of brain activity in a noninvasive way. Electroencephalog- 945
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Movement Coordination 17

raphy (EEG), magnetoencephalography (MEG) and func-946

tional magnetic resonance tomography (fMRI) have been947

used in coordination experiments since the 1990s to study948

the changes in brain activations accompanying (or trig-949

gering?) the switches in movement behavior [13,33,34].950

Results from MEG experiments reveal a strong frequency951

dependence of the dominating pattern with the contri-952

bution of the auditory system being strongest at low953

metronome/movement rates, whereas at high rates the954

signals from sensorimotor cortex dominate [15,35]. The955

crossover point is found at rates around 2Hz, right where956

the transitions typically take place.957

In two other studies the rate dependence of the audi-958

tory and sensorimotor system was investigated separately.959

In anMEG experiment Carver et al. [7] found a resonance-960

like enhancement of a brain response that occurs about961

50ms after a tone is delivered, again at a rate of about 2Hz.962

In the sensorimotor system a nonlinear effect of rate was963

shown as well. Using a continuation paradigm, where sub-964

jects moved an index finger paced by a metronome which965

was turned off at a certain time while the subjects were966

to continue moving at the same rate, Mayville et al. [36]967

showed that a certain pattern of brain activation drops968

out when the movement rate exceeds about 1.5Hz. Even969

though their contribution to behavioral transitions is far970

from being completely understood, it is clear that such971

nonlinear effects of rate exist in both the auditory and the972

sensorimotor system in parameter regions where behav-973

ioral transitions are observed.974

Using fMRI brain areas have been identified that show975

a dependence of their activation level as a function of rate976

only, independent of coordination mode, whereas activa-977

tion in other areas strongly depends on whether subjects978

are syncopating or synchronizing regardless of how fast979

they are moving [20].980

Taken together, these applications of coordination dy-981

namics to brain research have hardly scratched the sur-982

face so far but the results are already very exciting as983

they demonstrate that the experimental paradigms from984

movement coordination may be used to prepare the brain985

into a certain state where its responses can be studied.986

With further improvement of the imaging technologies987

and analysis procedures many more results can be ex-988

pected to contribute significantly to our understanding of989

how the human brain works.990
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