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1 Introduction 

The surfaces of the human cortex like the boundary 
between the grey and white matter or the pial surface, 
which separates the grey matter from the cerebral spi-
nal fluid, are strongly folded. The surface areas can be 
estimated from structural MRI scans and turn out to 
be 1994cm2 for the pial surface and 1741cm2 for the 
grey-white matter boundary for the subject shown 
here. A comparison to the surface areas of spheres 
that contain the same volume (452cm2 and 290cm2 for 
the pial and grey-white matter surface, respectively) 
shows that major parts of the cortical surfaces are lo-
cated inside the fissures. The actual shape of these 
surfaces is of particular interest because due to the 
columnar organisation of the cortex, the direction of 
the primary currents is perpendicular to them.  Here 
we show how this knowledge can be used as a con-
straint for a beamformer in order to estimate local ac-
tivations inside the brain during a certain task on a 
time scale at  the order of milliseconds. 
 
 
2 Parameterization of Cortical 

Surfaces 

The work of Dale, Sereno, Fischl and their co-
workers provided a powerful software package, 
known as Freesurfer, to the scientific community [1], 
[2], [3].  Among other things Freesurfer allows to cre-
ate tessellated cortical surfaces and to inflate them to 
various stages for visualization purposes by reducing 
local curvature, a process that eventually leads to a 
mapping of these surfaces onto a sphere. This trans-
formation is unique and invertible, i.e. every point on 
the cortical surfaces corresponds to a single point on 
the sphere and vice versa. Such a one to one mapping 
is possible because the spherical and the cortical sur-
faces are both singly connected and therefore topo-
logically equivalent. As shown in [3], [4] this isomor-
phism allows for a parameterisation of the cortical 
surfaces in terms of a spherical coordinate system 
where each point is defined in terms of two angles, 
latitude ψ and longitude φ and each pair (ψ,φ) on the 
sphere corresponds to a location in 3d-space de-
scribed by its cartesian coordinates (x,y,z).   
 
A grey-scale representation for the z-coordinates of 
the grey-white matter boundary as functions of ψ and 
φ is shown in Fig.1 (left) with the values of z increas-
ing from dark to the brighter shades. Plotted in black 
are the contour lines of a certain constant value of the 
z-coordinate, which represents the parameterisation in 
(ψ,φ) of the grey-white matter boundary in an axial 

slice. The conversion from the spherical representa-
tion back to 3d-space is shown in Fig. 1 (right), which 
also depicts the vectors perpendicular to this surface 
corresponding to the directions of the primary cur-
rents. With this procedure we have a quasi-continuous 
representation of the cortical surfaces and can sample 
and tessellate them at whatever accuracy needed. 
 
 
 
 
 
 
 
 
 

 
Fig. 1: see text 
 
 
 
3 Beamformers 
 
Beamforming is a technique that comes in different 
flavours [5], [6], [7] and allows to calculate a filter 
such that an array of electrodes or SQuID sensors be-
comes most sensitive to a current at a certain location 
and a certain direction inside a volume. This is 
achieved by minimizing the power from all other lo-
cations and orientations. The EEG or MEG signals 
that are measured by an array of electrodes or sensors 
can be represented in form of a vector X(t) whose 
components correspond to the individual sensors. The 
signal that originates from a current source at Θ can 
then be written in the form SΘ(t)=HΘ·X(t), where 
Θ=Θ(x,y,z,ψ,φ), has to be  a 5-dimensional quantity 
in order to represent both location and direction of the 
current. The idea now is to minimize the power origi-
nating from Θ over a certain time span, while keeping 
the contribution from Θ itself constant. Mathemati-
cally, this leads to a minimization problem under con-
straints of the form 
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with the constraint 1⋅ =H Gθ θ , where GΘ is the 
forward solution, i.e. the pattern that would be meas-
ured in the array from a current source at Θ. Applying 
the method of Lagrange parameters (1) can be solved 
leading to  
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where C is the covariance matrix defined as 
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In principle, one can now scan a volume (the brain) 
and calculate an estimate for the source activity at 
each Θ. 
 
However, if the signal dynamics is low-dimensional, 
for instance after averaging or with only a few 
sources active, the covariance matrix does not have an 
inverse. It is still possible to solve the problem de-
fined by (1) by expanding the beamformer HΘ and the 
forward solution GΘ into the eigenvectors v(k) of the 
covariance matrix C. 
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After straightforward calculations the beamformer 
coefficients hk and the source power are found as 
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The source power calculated from (2) or (5) cannot be 
used to directly compare activity strengths obtained 
from different Θs, because due to the constraint 

1⋅ =H Gθ θ the gain of the beamformer depends on 
the location and orientation of the source. The power, 
therefore, has to be normalized by a gain factor, 
which can be found by calculating the sensitivity of 
the sensor array to uncorrelated noise from that 
source. The noise power is given by  
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according to (2) or (5), respectively. Here Σ is a di-
agonal matrix representing the noise which can esti-
mated from experimental data, σl are the eigenvalues 
of Σ, and the parameter µ allows for controlling the 
sensitivity of the beamformer. Increasing µ from 1 
leads to an increase in the signal to noise ratio with 
the tradeoff that the spatial resolution decreases, i.e. 
the pattern gets more blurred and less focused. The 
power adjusted by the gain of the beamformer is 
given by the ratio Sθ

2 / Nθ
2 . 

4 Local Dynamics from a Beam-
former with Strong Anatomi-
cal Constraints 

The above considerations are applicable to most of 
the beamforming approaches found in the literature. 
The main differences are in the way constraints are 
used. In principle, one could search the 5-dimensional 
space given by Θ, and algorithms have been proposed 
to estimate location and direction of a current source 
that way [7]. SAM [6] restricts the direction of sour-
ces to the plane tangential to the surface the sensors 
are located on, or to the best fitting sphere for this 

surface, which is particularly useful for MEG as this 
technology is most sensitive to tangentially oriented 
sources. This constraint reduces the dimension of the 
problem because only one angle has to be varied and 
the largest power found is taken as the activity at that 
location. Here we will go much further and constrain 
the locations to points on the grey-white matter boun-
dary and the directions to be the normal vector to the 
surface at these points as proposed in [1] and also u-
sed in [8].  Figure 2 (left) shows activation in left sen-
sori-motor cortex recorded using fMRI during an ex-
periment where a subject was moving the right index 
finger at a constant rate paced by a metronome. Figu-
re 2 (right) shows the vectors inside the activated area 
that are located on the grey-white matter boundary 
and oriented prependicular to this surface. The line 
thickness indicates the activity found by fMRI for this 
location, suggesting that the strongest activation takes 
place inside the walls anterior and posterior to the 
central sulcus (as expected).  
 
 
 
 
 
 
 
 
 
 

 
Fig. 2: see text 
 
Figure 3 (top row) shows a blowup of the region a-
round the central sulcus, with normal vectors plotted 
on the posterior (left in figure) and anterior (right in 
figure) side. The distance between the vectors on a 
given side is 2mm measured along the grey-white 
matter boundary. The beamformer was used to obtain 
an estimate for the timecourse of the activity at these 
sites. MEG data was recorded from the same subject 
under similar experimental conditions and coregiste-
red to the structural and functional MRI datasets as 
well as the grey-white matter boundary. Then the 
beamformer coefficients hk were calculated according 
to (5) for the different sites and timeseries S2

Θ(t) for 
each location were determined by applying the beam-
former to the dataset S2

Θ(t)={HΘ·X(t})2. Results for 
the posterior and anterior regions of the central sulcus 
are show in the left and right collumns of the bottom 
part in Fig. 3, respectively. Here going left to right 
along the sulcus corresponds to top to bottom in the 
collumns. A vertical line indicates the time point of 
maximum finger flexion. The length of each timese-
ries is 480ms. Plotted  as a dotted line is a squared 
timeseries from a single channel as a reference. From 
bottom to top the activation shifts from a timepoint 
prior to peak flexion to a time point after peak flexion 
in an almost wave like fashion. This corresponds to 



activity traveling from right to left along the central 
sulcus as time evolves. 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 3: see text 

5 Conclusions 

The example shown here is only a first small step in 
the direction of combining different imaging techni-
ques but nevertheless demonstrates the potential of 
what kind of insight can be gained by doing so. Re-
construction of the grey-white matter boundary led us 
to well defined and physiologically relevant 
constraints for a beamforming algorithm that then al-
lowed us to find the time course of activity in a region 

of interest identified by functional MRI. A further step 
would be to include EEG data from the same subject 
recorded under the same task conditions as it could 
serve as an independent test for the reliability of the 
activation sequence found here from MEG recor-
dings. Finally, with the approach presented here it 
may be possible to find connections between cortical 
areas by calculating coherences not between the sig-
nals from different electrodes or sensors but between 
different locations on the cortical surfaces.  
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