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Spatiotemporal Forward Solution of the EEG and
MEG Using Network Modeling
Viktor K. Jirsa*, Kelly J. Jantzen, Armin Fuchs, and J. A. Scott Kelso

Abstract—Dynamic systems have proven to be well suited to de-
scribe a broad spectrum of human coordination behavior such syn-
chronization with auditory stimuli. Simultaneous measurements
of the spatiotemporal dynamics of electroencephalographic (EEG)
and magnetoencephalographic (MEG) data reveals that the dy-
namics of the brain signals is highly ordered and also accessible
by dynamic systems theory. However, models of EEG and MEG
dynamics have typically been formulated only in terms of phe-
nomenological modeling such as fixed-current dipoles or spatial
EEG and MEG patterns. In this paper, it is our goal to connect
three levels of organization, that is the level of coordination be-
havior, the level of patterns observed in the EEG and MEG and
the level of neuronal network dynamics. To do so, we develop a
methodological framework, which defines the spatiotemporal dy-
namics of neural ensembles, the neural field, on a sphere in three
dimensions. Using magnetic resonance imaging we map the neural
field dynamics from the sphere onto the folded cortical surface of
a hemisphere. The neural field represents the current flow per-
pendicular to the cortex and, thus, allows for the calculation of
the electric potentials on the surface of the skull and the magnetic
fields outside the skull to be measured by EEG and MEG, respec-
tively. For demonstration of the dynamics, we present the propa-
gation of activation at a single cortical site resulting from a tran-
sient input. Finally, a mapping between finger movement profile
and EEG/MEG patterns is obtained using Volterra integrals.

Index Terms—Dynamics, EEG, forward solution, MEG, mod-
eling, network.

I. INTRODUCTION

NONINVASIVE techniques such as functional magnetic
resonance imaging (fMRI), electroencephalography

(EEG), and magnetoencephalography (MEG) provide entry
points to human brain dynamics for the study of human
behavior and cognition, as well as for clinical purposes.
Each of these imaging technologies provides spatiotemporal
information about the on-going neural activity in the cortex.
Analysis techniques of experimental spatiotemporal data
typically involve the identification of foci of activity such
as single- or multiple-dipole localization (see [53] and [64]
for an overview) in a three-dimensional (3-D) volume. Other
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techniques emphasize the pattern approach which aims at the
identification of activity patterns defined on the two-dimen-
sional (2-D) surface spanned by the EEG and MEG detectors.
These remain somewhat invariant during the time course of
brain activity and typically minimize a postulated norm such as
the Gaussian variance [principal component analysis (PCA)]
[17], [40], [46] or non-Gaussian statistical independence
[independent component analysis (ICA)] [50]. The latter may
also be derived from a Bayesian framework [44]. Signal source
projection (SSP) [62] provides a decomposition into patterns of
activity which are physiologically or anatomically meaningful,
by these means, however, restricting the possible solution
space to the experimenters expectations. Similarly, dual space
projections provide a decomposition into spatial patterns which
are meaningful with respect to dynamics such as a maximal
correlation with a peripheral signal [18]. More ambitious
techniques wish not only to decompose the spatiotemporal
dynamics into meaningful patterns, but also identify equations
which govern the dynamics of these patterns [7], [8], [32],
[47], [48], [63]. Unfortunately, the successful application of
these techniques has been limited to special cases in which the
majority of the observed dynamics has already been well un-
derstood [32]. Spatiotemporal activity propagation of electro-
and magnetoencephalographic signals has been represented
by discretely coupled oscillator models (see [64, chapter on
source modeling]) representing dipole sources. Spatially and
temporally continuous models, so-called neural fields, were
formulated by Wilson and Cowan [67], [68], Nunez [54], and
Amari [2] in the 1970s. With improving imaging techniques and
the development of MEG, these types of models experienced
a renaissance [15], [33], [49], [57], [69]. These models are
based on coupled neural ensembles in a spatially continuous
representation using integral equations involving a time delay
via propagation. Jirsa and Haken [33] generalized and unified
the earlier models by Wilson and Cowan [67], [68] and Nunez
[54] and demonstrated that they describe the same system. The
modeling on these different levels of organization has been
phenomenological, i.e., only partially taking into account the
specific neurobiological nature of the measured signal and its
underlying mechanisms of generation. Each level of description
has been tackled separately, never in unison with other fields
of research and typically involving the application of strong
simplifications. For example, the physiologically motivated
neural field dynamics describes current flow perpendicular to
the cortical sheet, but it is normally compared to the patterns of
electric scalp potential measured by EEG. The latter patterns’
dynamics is certainly related to the dynamics of the neural acti-
vations along the cortex, but not identical. Further, Steyn-Ross
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et al. [61] explain a hysteresis phenomenon called ‘biphasic
response’ in the clinical human EEG during anesthesia. Their
underlying neural model is based upon Liley’s work [49]
using a spatially uniform activity distribution in one dimension
with a connectivity distribution which falls off exponentially,
independent of the cortical location. Jirsaet al. [35] also ap-
plied a one-dimensional (1-D) model, but allowed for varying
spatial structure in the activity distributions. Here, by applying
neural field equations to a bimanual coordination situation,
they predicted the spatiotemporal dynamics observed in the
MEG and confirmed these experimentally. A set of equations,
governing human bimanual coordination [21], was derived
from these neural field equations. This connection between
spatiotemporal brain dynamics and behavioral dynamics has
become possible through the notion of functional units [18],
[33], [35] that serve as interfaces between neural and behavioral
signals. Despite these successes, the simplifications made in
these approaches do not take into consideration a more detailed
physiological and anatomical interpretation of the identified
dynamic mechanisms.

In this paper, we develop a methodological approach that
allows, at least for the type of behavioral experiments discussed
here, for the connection of the dynamics of neural activity along
the cortex to the dynamics of EEG and MEG patterns, as well
as the dynamics observed in motor behavior. The conceptual
steps are the following. We define a spatiotemporal neural
field dynamics on a spherical geometry. This special choice
of coordinate system allows us to treat the high-dimensional
dynamics not only computationally, but also mathematically.
Then, in consecutive steps, the neuronal dynamics is mapped
onto the unfolded cortical surface, then on the folded cortical
surface (thereby minimizing the spatial distorsions), and finally
on the EEG and MEG patterns on the scalp. The connection
between neural and behavioral dynamics is achieved by a linear
convolution of the behavioral signal with an integral kernel,
that is a first-order Volterra integral. The analysis task is to
identify the correct integral kernel. Our paper is organized as
follows. First, we review the dynamics of coordination behavior
and its neural correlates. Second, we discuss the foundation
of neural field dynamics and develop a systematic treatment
of functional units. Third, we elaborate the methodologies
involved in traversing scales of organization from the level of
neural ensemble to EEG and MEG. Finally, we discuss the
example of neural field dynamics after an induced stimulus and
provide an outlook to future work.

II. BRAIN AND BEHAVIOR CORRELATES OFCOORDINATION

The coordination of rhythmic finger movements has devel-
oped to a paradigm in human coordination dynamics [39], [41].
Behaviors, such as synchronization of finger movements, can
be either described by the individual components, such as the
positions of the finger tips, or by the equivalent movement pat-
terns, such as the symmetric and anti-symmetric patterns of
finger movements [36]. The latter are also called in-phase and
anti-phase patterns, respectively. Component and pattern de-
scription are entirely equivalent. In the simplest scenario, when
the finger movements are restricted to a 1-D flexion and exten-

Fig. 1. An example of numerically generated time series of a phase transition:
In the upper part, the left and right finger positionr , r initially oscillate in
anti-phase, then a phase shift occurs and the finger positions move in-phase.
Below, the same dynamics, but in terms of the movement patterns,� (t) =
(r + r )=2 and� (t) = (r � r )=2, is shown.

sion of the index fingers, the left and right finger positions are
the components and are given by the scalars and ,
respectively. Both are obviously dependent on the time. The
movement patterns are then given by and

where the plus sign denotes the symmetric
coordination pattern and the minus sign the anti-symmetric pat-
tern. Experimentally it turns out that when left and right fingers
are moved anti-symmetrically, that is has maximal ampli-
tude and 0 and the movement frequency is increased, a
transition occurs from a dominating anti-symmetrical to a sym-
metrical pattern, that is obtains maximal amplitude and
becomes zero. See Fig. 1 for an illustration of this transition.

Such transitions, also called bifurcations, are a characteristic
feature of complex systems capable of pattern formation. All
phenomena known from phase transitions in physical systems,
such as hysteresis for example, may also be found in behav-
ioral pattern formation. Similar to our description of behavior,
we wish to describe the spatiotemporal patterns observed using
EEG and MEG during movement coordination as a pattern for-
mation process. Each EEG or MEG sensor measures a time se-
ries where indexes the sensor. The individual measure-
ments of each sensor represent here the component level
and may be arranged in a vector . The sen-
sors are typically arranged in a helmet, as shown in the bottom
right of Fig. 2 and span a 2-D surfaceover the skull. When
this surface is unfolded, a so-called brain map or scalp topog-
raphy is obtained for each point in time: the measurements

are interpolated on the surfaceand color-coded to pro-
vide a spatially continuous representation of the EEG or MEG
measurements. Accordingly, the discrete vector becomes
a spatially continuous field with . When plotted
for each time point, the resulting series of scalp topographies
is called a space-time series. An example of a space-time se-
ries is shown for a unimanual coordination experiment on the
bottom of Fig. 2, time increasing from top left to bottom right.
A review of the results in Fig. 2 will serve to illustrate that
phase transitions and pattern formation phenomena in behavior
are strongly correlated with phase transitions and pattern for-
mation phenomena in the EEG and MEG scalp topographies.
During the coordination experiment, the subject was instructed
to perform a right-handed finger movement in anti-phase with
an auditory metronome starting at frequencies of 1 Hz and in-
creasing in steps of 0.25 Hz. Intervals of constant stimulus fre-
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Fig. 2. Unimanual finger movement and its MEG. A 37-dimensional SQUID array was placed over the left hemisphere as illustrated in the bottom right graph.
For six plateaus, corresponding to stimulation frequencies 1–2.25 Hz, the dominant spatial structure is plotted in the top row, together with its power spectrum. In
the latter, the vertical red lines denote the stimulus frequency and its higher harmonics. The phase transition in behavior occurs on plateau IV, coincident with a
change in the spatial patterns and the power spectra. An example space-time series of five cycles on plateau II is plotted in the bottom left.

quency are referred to as plateaus. Behaviorally, the subject
underwent a transition from anti-phase movement to synchro-
nization with the stimulus on plateau IV at a required rate of
1.75 Hz. During the experiment MEG was recorded from sen-
sors located centrally over the primary motor and auditory areas
of the left hemisphere, centered 2 cm from C3 (10–20 system)
in the posterior direction. The SQUID system consists of 37 ax-
ially symmetric first-order gradiometers each 20 mm in diam-
eter and spaced 22 mm apart. Each sensor had a sampling fre-
quency of 862 Hz and a bandpass filter between 0.1 and 100
Hz. Analyses [17] showed that the first two spatial principal
components (PCA) carry about 80% of the variance of the en-
tire MEG signal and imply the presence of two spatial patterns
dominating the space-time series of the scalp topographies. As
shown in the first row of Fig. 2, the strongest PCA pattern of
each plateau carries about 60% of the variance of the MEG
signal. Before the transition, on plateaus I–III, the first pattern
dominates. A transition occurs on plateau IV and a new pattern
emerges on plateaus V and VI when the subject actually per-
forms an in-phase motion. This transition from one pattern to
the other pattern is accompanied by a transition in the frequency
domain: On plateaus I through III, the observed MEG pattern
oscillates mainly with the movement frequency and on plateaus
V and VI mainly with twice the movement frequency. As an
example of the spatiotemporal sequence for constant stimulus
frequency, Fig. 2 shows five cycles of the measured MEG pat-

terns at different time instances during plateau II. This sequence
clearly exhibits the dominance of the first pattern extracted in
the earlier analysis, Fig. 2 (top left).

The vector with the measurements
may be decomposed as

(1)

where are the time-independent spatial modes obtained
from the PCA. Their time evolution is captured by the corre-
sponding time-dependent coefficients . In the inter-
polated spatially continuous representation, (1) reads

(2)

The modes or characterize the spatial pat-
terns of the EEG and MEG and the time-dependent coefficients

characterize their dynamics. The remainder of the
signal is captured by or . There is a variety of pro-
cedures available to extract patterns from a space-time series
some of which have been mentioned in Section I. The partic-
ular choice depends on the question asked, for instance a PCA
minimizes the variance of the measured signals under the con-
dition of orthogonal patterns. In the present experiment a PCA
has been chosen [17], but other techniques which do not require
orthogonal patterns essentially provided the same results [32].
Because the contribution of the remainder of the signal,, to
the variance of the entire signal is small, we perform the
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approximation . The space-time dy-
namics of may now be interpreted as a competition of two
patterns : Initially, the pattern dominates, then a tran-
sition occurs and the pattern takes over. The dynamics and
transition of these patterns has been described as an interaction
of their time-dependent coefficients by means of or-
dinary differential equations of the form [31]

(3)
The dots denote the first and second time derivative, respec-
tively. Models of this form are phenomenological and intended
to capture the generic features of the system’s dynamics, that
is its bifurcation mechanism. Here, the task is to identify the
typically nonlinear coupling terms . Phenomenological
models are generic in its nature with respect to the dynamics,
but their drawback is that no connection is being made to
the underlying system which generates the measured signals.
As a consequence, the mathematical coupling terms in
the phenomenological model cannot be interpreted in phys-
iological or anatomical terms. Neither is it strictly possible
to identify the dynamics of these phenomenological models
with the dynamics of the many physiologically motivated
neuronal network models in the literature. Still, it is common
practice to compare at least qualitatively the predictions of the
physiological network models to EEG/MEG pattern dynamics.

We have addressed two levels of organization, the dynamics
of patterns of behavior (such as the coordination of finger move-
ments) and the dynamics of spatiotemporal patterns observed in
the EEG and MEG. In Section III, we discuss the dynamics of
physiologically motivated network models of neuronal activity.
Then we develop the methodological steps needed to connect
these levels of organization. An approach to the mapping of pe-
ripheral data (such as external stimuli, finger movements, etc.)
to cortical activations is outlined and the algorithmic and com-
putational requirements to map cortical activations (obtained
from spatiotemporal network modeling) onto EEG and MEG
signals are discussed.

III. M ETHODS

A. Neural Field Dynamics

We choose a macroscopic level of description, the neural
ensemble, which is significant for the generation of EEG and
MEG. The local field potential is generated by the simultaneous
activity of thousands of neurons in the extracellular space of
the cortical sheet. The resulting neural ensemble activity is
understood to generate the EEG [16]. The simultaneous intra-
cellular currents in the dendritic shafts of the neural ensembles
generate the MEG [66]. The neuronal cell membranes, being
good electrical insulators, guide the flow of both intracellular
and extracellular currents and, thus, result in a current flow
perpendicular to the cortical surface due to the perpendicular
alignment and elongated shape of pyramidal neurons. The
neural ensemble average of these currents results in the primary
current density which is the site of the sources of brain activity
and is denoted by the scalar so-called neural field with

being the location on the 2-D folded cortical surfaceand

being the time. Note that, although the conversion of chemical
gradients is due to diffusion, the primary current density

is determined largely by the cellular-level details of
conductivity. The structure of our neural model is generic and
found in most models describing neuronal activity: a firing
rate of a neuronal ensemble at a location A is transmitted to a
neuronal ensemble at a distant location B. Most models differ
in variations of connectivity and inclusion of physiological
detail. In the present neuronal field model, a time delay via
transmission is considered due to the large spatiotemporal
scales of interest. The following specific properties distinguish
the present neuronal field model from most other approaches:
Conversion operations [33] define mathematical relations
between firing rates and local field potentials. Research by
Freeman [16] and others [1], [60] showed in a variety of cortical
areas that the neuronal firing rate and the local field potential
are related in a well-defined way (the so-called conversion
operations [16]): The conversion from local field potential to
firing rate within a neuronal ensemble is sigmoidal. The inverse
conversion, from firing rate to local field potential, is also
sigmoidal, but constrained to a linear small-signal range. To
capture the large spatial and temporal scales in EEG and MEG,
the connectivity includes both, the short range intracortical
fibers (excitatory and inhibitory), which typically have a length
of 0.1 cm and the corticocortical (only excitatory) fibers with
lengths ranging from about 1 cm to 20 cm [54]. Propagation
along these long-range fibers may cause time delays up to 200
ms. The distribution of the intracortical fibers and, thus, the
local connectivity, is homogeneous [6], whereas the distribution
of the corticocortical fibers is not (estimates are that 40% of
all possible corticortical connections are realized for the visual
areas in the primate cerebral cortex [13]). For these reasons
an inhomogeneous interareal connectivity has to be allowed
resulting in a translationally variant connectivity function

with . External input is
realized such that afferent fibers make synaptic connections at
a site on the cortical sheet, whereas multiple inputs, such as
an auditory, visual, or sensorimotor stimulus, lead to different
sites on the cortical sheet. For its functional differentiation, the
input is also called a functional input unit [18] and will
be discussed in more detail in the next section. The neural field
dynamics may be written as

(4)

where represents the sigmoidal firing rate andthe prop-
agation velocity along axonal fibers [33]. The neural field (4)
is a nonlinear retarded integral equation with a spatially variant
integral kernel, that is its dynamics is arbitrarily complex and
will crucially depend on the choices of and . To
gain a first intuition of the neural field’s dynamics, the following
simplifications may be made (in this paragraph for illustrational
purposes only): The cortical surfaceis 1-D. The connectivity

is spatially invariant

(5)
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Then, the method of Green’s functions [33] may be applied
which transforms (4) into the Fourier-space of physical space-
time, reshuffles the terms in the equation and performs a back-
transformation into physical space-time. The resulting equation
is a nonlinear partial differential equation of the form

(6)

where and the 1-D Laplacian .
Without any input, , the left-hand-side is a
damped wave equation and has oscillatory properties. The spa-
tially uniform pattern is generally stable, if the slope of the sig-
moid function on the right-hand side of (6) is sufficiently
small. Neurophysiologically, the steepness of the slope corre-
lates with the excitability of the neural ensembles at the partic-
ular site, whereas the ensembles’ excitability is typically deter-
mined by the biochemical environment such as the presence of
neuromodulators. If the slope increases beyond a threshold, then
the spatially uniform state is destabilized and wave propagation
may occur. More complex connectivity functions than (5) result
in an arbitrarily complex dynamics of (4). A first account of a
nonhomogeneous connectivity function has been given in [37],
[38]: Here, the authors embedded a fiber track connecting two
distant areas into an otherwise homogeneously connected neural
sheet. They showed that the system’s spatiotemporal dynamics
is guided through a series of bifurcations as the distance between
the connected areas is varied. A representation of the dynamical
system (4) as a partial differential equation turns out to be te-
dious and impractical due the nonlocal and spatially variant con-
nectivity. Such connectivity functions displaying patches of en-
hanced connectivity between distinct areas have been reported
experimentally in animal studies [6].

B. Functional Units

Functional units represent interfaces between the neocortex
and peripheral (input and output) signals. A functional unit
which maps EEG and MEG signals onto peripheral signals,
e.g., the finger movement position , is called an output unit.
Inversely, when an external signal is mapped onto an EEG or
MEG signal, then the functional unit is an input unit. In the
following, we will discuss the steps involved in the construction
of a functional unit.

As a working hypothesis, a peripheral signal, here for con-
creteness the finger position , is assumed to be constructed
as

(7)

where is the initial time point of the measurements and
is a spatial pattern in the spatially continuous 2-D scalp

topography in the space spanned by the EEG and MEG
sensors as discussed in Section II. We further assume that the
EEG and MEG dynamics during the finger movement may be
represented by very few spatial patterns, typically one or two.
This assumption has to be tested against the experiment (see
[17], [32], [40], [41], [51], [65] for examples) by extracting the

spatial patterns using the earlier discussed mode decomposition
techniques (PCA, dual space methods, SSP, etc). The integral
kernel is an unknown convolution function which we
wish to determine. The finger position , the brain signal
measurements and the spatial patterns are
given by the experiment and, hence, are known variables. The
mapping in (7) is the first term of a nonlinear Volterra series
[59]. The truncation after the linear term may be motivated
for rhythmic movements, since here the peripheral signals and
the EEG and MEG activity of the functional units seem to be
linearly related [17], [18], [43]. However, also higher order
terms of the Volterra series may be considered (see [59] for a
discussion of Volterra series). For brevity, we rewrite the time
integral in (7) as a linear operator

(8)

where is an arbitrary time-dependent function. The inverse
of the integral operator is a linear differential operator
with constant coefficients [11], [59]. Applying the inverse oper-
ator in (7), we obtain

(9)
where are constant coefficients. Kelsoet al.
[43] found experimentally that the dynamics of the MEG signal

during rhythmic finger movements may be decomposed
into two spatial modes and . Here, again as in Section II,

is a vector containing the MEG measurement of the sen-
sors. The spatial modes and were obtained by minimizing
a square error for the following decomposition [43], [18]

(10)

with the finger position and its velocity . Note that
the spatial modes and do not require to be orthogonal.
Experimentally, it turns out that the velocity is the dominant
contribution [43], i.e., the scalar products of the vectors obey

. We multiply (10) by the dominating mode
and obtain

(11)

After division of (11) by , a comparison with (9) provides
the identification

(12)

in the continuous limit and

(13)

There is one additional freedom, namely the scaling of either
or which introduces the scaling parameter. With

(13) we rewrite (9) as

(14)

where the left-hand side represents the intrinsic dynamics of
the finger motion and the right-hand side the excitation by the
brain signals, thus, we can interprete the finger movement as
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an overdamped oscillator driven by the brain signals which are
projected onto the functional output unit . The solution
of (14) reads

(15)

with the transfer function

(16)

and the initial time point far in the past, i.e., .
Until now the spatial component of a functional units has been

identified with the spatial patterns and which are observed
in the EEG/MEG and generated by time-dependent input signals
(e.g., see [43]). This is due to the fact that the description and the
modeling of EEG/MEG dynamics has been almost exclusively
in terms of patterns rather than cortical sources. In the case of a
finger movement, the dominating spatial patterncorresponds
to a dipolar pattern in the EEG/MEG located over the contralat-
eral motor cortex and is shown in Fig. 3. Anatomically, these
areas are defined via their afferent and efferent fibers connecting
to the cortical sheet. The connection between cortical source
currents confined to the cortical surface and the re-
sulting EEG and MEG pattern spanning the interpolated
surface is given by the forward propagator discussed in Sec-
tion III-F. Equivalently, a functional input unit (see [18]
for a detailed treatment) is defined by its location on the
folded cortical sheet and a time-dependent peripheral signal

(17)

where is the initial time point and the to be deter-
mined convolution function. The cortical site on the sur-
face and its location and orientation in the 3-D physical space
(remember that the cortical surfaceis a 2-D folded surface
in the 3-D physical space!) determine the observable EEG and
MEG pattern on the skull surface. This is known as the for-
ward solution. When an input arrives at the cortical site

, it excites the neural ensembles through (4), (17)
and gives rise to spatiotemporal pattern formation along. The
forward solution generates the corresponding EEG and MEG
patterns for every point in time.

Our main results are (12), (13), (15), and (16).Here, (15)
defines an explicit relation between the brain activity
measured by EEG/MEG and a rhythmic finger movement.
Fig. 3 shows the reconstruction of the movement profile from
experimentally obtained MEG activity according to (15). Here,
subjects were instructed to coordinate the movement of their
right (preferred) index finger with a visual metronome at a fre-
quency of 1 Hz. Measures of finger displacement over time were
obtained as pressure changes in an air cushion detected by trans-
ducers. During the experiment, the magnetic field generated by
the on-going neural activity was measured using a 68-channel
full-head magnetometer at a sampling frequency of 250 Hz. A
total of 100 movement cycles was recorded and the brain signals
in each sensor were averaged after artifact removal. Note the re-
constructed movement profile fits the experimentally observed

movement particularly well in the active phase represented by
its positive flank. The discrepancies mainly occur after peak dis-
placement and are probably due to the sensory feedback which
is not accounted for by (15).

C. Neural Field Dynamics on a Sphere

We wish to obtain a simple representation of the neural field
dynamics (4) on a closed 2-D surface. The spherical geom-
etry is an excellent candidate coordinate system because it has
a simple parametrization. Spatial patterns may be decomposed
into spherical harmonics which often provide a basis for a lower
dimensional mathematical description of an otherwise complex
dynamics. But, also, numerical algorithms benefit from a de-
composition into spherical harmonics and may reduce the com-
putation time needed for the integration of systems described by
neural fields. For these reasons, we define the neural field (4) in
two dimensions with spherical boundary conditions. For a ho-
mogeneous, exponentially decaying connectivity function [such
as (5), but 2-D], the corresponding partial differential equation
can be determined

(18)

with the 2-D Laplacian acting on . The details
of the differential operators on the left-hand side of (18) de-
pend on the spatial decay of the connectivity. However, these
details are not significant for large scale pattern formation as
shown by Haken [24]. For the purpose of calculating dynamics
on the brain, each cortical hemisphere is represented in a spher-
ical geometry and its dynamics is defined by (4) or (18), respec-
tively. The two spheres interact by two means: through calossal
pathways connecting the two spheres and through afferent fibers
(crossing and noncrossing) from the periphery. Subcortical re-
gions such as the brainstem are not included. Should heteroge-
neous fiber pathways be included also, then the integral repre-
sentation given by (4) is used and two types of pathways dis-
tinguished: 1) The calossal fiber system from one sphere to an-
other is treated in a manner equivalent to peripheral afferents; 2)
Other heterogeneous pathways are included in the connectivity
function . Note that heterogeneous pathways contribute
strongly to the dynamics on all scales of organization; even local
changes of connectivity have recently been shown to result in a
major reorganization of brain activity [37], [38].

D. Unfolding of the Cortical Sheet and its Spherical
Representation

In order to equate the distribution of neural fields with actual
cortical structure, a mapping between the spherical surface and
the cortical surface is required. Several steps are undertaken to
complete this mapping. All of the described procedures were
performed using the Freesurfer software package developed by
Dale and colleagues [10], [12]. The first step is the segmenta-
tion of the brain structure and the definition of the gray-white
matter boundary within each hemisphere. This step allows for
the description of the cortical surface by a mesh defined by a
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Fig. 3. Functional unit of a right-handed finger movement. The spatial MEG pattern, that isv (x), is shown on the left which represents the dominant spatial
structure present in the MEG signals obtained from a 64-sensor full-head detector. Here, the unfolded scalp topography is shown with the nose on the top, left ear
is left, right is ear right. In the middle, the time series obtained from the projection onto the functional unit,dx v (x)h(x; t), is shown. On the right, the time
series showing the experimental finger movementr(t) is plotted in blue and the reconstruction using the functional unit [see (15)] is plotted in red. All the time
series range from� 500 ms to 500 ms with maximum flexion att = 0.

Fig. 4. Inflating the surface, representing the gray-white matter boundary and mapping onto a sphere. From right to left, the sequence shows how a spherical
coordinate grid gets folded into the fissures.

set of vertices and polygons. The second step involves the infla-
tion of the cortical surface to produce a closed surface that has
minimal folding but also minimizes any distortion in the rela-
tive location between cortical locations (see middle image of
Fig. 4). This step eliminates the difficulty of visualizing cortical
activity within sulci. The final step is to transform this shape
onto a spherical representation while maintaining as much of
the spatial relation as possible by preserving the metric proper-
ties of the surface while minimizing the local curvature. With
this procedure, any point on the folded cortex can be addressed
using any number of coordinate systems via its isometric lo-
cation on the neural sphere. Both transformations, forward and
backward, are well defined and their product yields the identity.
Fig. 4 gives an impression of this process by showing the three
surfaces with the cortical surface color coded in red and blue

according to curvature. A spherical coordinate grid is plotted
in green with the line of zero longitude in white. The resulting
meshes are extremely dense typically involving on the order of
150 000 vertices for the representation of a single hemisphere.
For the purpose of computational frugality, we decimated this
tessellation to a more manageable number of vertices and cor-
responding polygons, 4512 and 9022, respectively.

E. Representation of Neural Fields on the Folded Cortex

In the previous section, we described how each hemisphere
was expanded and warped onto a sphere. As a result of this trans-
formation, each sampled vertex on the folded cortical surface
has a corresponding vertex located on the surface of a sphere.
In addition to this one-to-one mapping between the vertices
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defining both the surface of the cortex and a sphere, the con-
nectivity of the polygons (i.e., how the vertices are connected)
remains the same across this transformation. The description of
activity on the surface of the spherical hemisphere is automati-
cally mapped onto the surface of the cortical representation. The
task, therefore, simplifies to the mapping of the activity onto the
surface of an irregularly sampled sphere. This is a simple matter,
however, because the neural field is continuous across the sphere
on which it is generated and therefore, can be sampled at any ar-
bitrary point. The mesh vertices of the cortical sphere are easily
converted to spherical coordinates and the value at the corre-
sponding location of the neural field sphere is assigned. Cau-
tion has to be taken, though, when the space-time structure of
the neural field dynamics on the sphere is compared with the
one on the folded cortex. The nonconformal mapping of the
Freesurfer software alters the distances between adjacent vertex
points and, hence, the neural field dynamics. Fischlet al. [12]
report an average local error of 20% between folded cortical and
spherical coordinate system. In numerical simulations of neural
fields that were homogeneously connected, we did not find any
obvious discrepancies between the dynamics in both systems
which is probably a consequence of the integration process in
(4) resulting in an averaging of the error. Research of detailed
error calculations of the space-time structure is on-going.

For graphical presentation, the field distribution over the cor-
tical surface can be represented as a set of color values scaled
between the maximum and minimum field strength. Changes in
this color representation over time then give a temporal depic-
tion of how the field dynamics unfold on the actual cortical sur-
face. However, in order to calculate the forward solution using
these current densities we need the additional information about
the direction of current flow at each vertex location and each
point in time. The generation of local field potentials within the
cortex is dominated by activity in ensembles of pyramidal cells,
which are oriented perpendicular to the cortical surface. It is
possible, therefore, to model the direction of instantaneous cur-
rent flow in a small cortical region as a normal vector on the
mesh surface. The orientation of the vector gives the direction
of current flow and the length of the vector gives the current
strength. For the purpose of mapping neural activations onto the
representation of the cortical surface a vector oriented normal to
the polygon surface was computed for each mesh vertex. These
vectors were then normalized to a length of one and scaled by
the amount of neural activation at each time point. Because the
direction of current flow is given by the orientation of the cel-
lular generators, orientation of these vectors does not change
over time (see Section III-F for details). Instantaneous current
flow is always represented by vectors oriented orthogonal to the
cortical surface while the propagation of current flow across the
cortical surface is modeled as changes in the absolute and rela-
tive strengths of these vectors over time.

F. Forward Solution of the EEG and MEG

At this stage we have a representation of the current distribu-
tion in the 3-D physical space and its evolution over
time . To make a comparison with experimental data, the for-
ward solutions of the scalar electric potential on the skull
surface and of the magnetic field vector at the detector

locations have to be calculated. Here, it is useful to divide the
current density vector produced by neural activity into two
components. The volume or return current density,

, is passive and results from the macroscopic elec-
tric fields acting on the charge carriers in the conducting
medium with the macroscopic conductivity . The primary
current density is the site of the sources of brain activity and is
approximately identical to the neural field , because, al-
though the conversion of chemical gradients is due to diffusion,
the primary currents are determined largely by the cellular-level
details of conductivity. The current flow is perpendicular to the
cortical surface due to the perpendicular alignment and elon-
gated shape of pyramidal neurons. In the quasi-static approx-
imation of the Maxwell equations, the electric field becomes

where is the Nabla-operator . The
current density is

(19)
where is the cortical surface normal vector at location.

The forward problem of the EEG and MEG is the calculation
of the electric potential on the skull and the magnetic field

outside the head from a given primary current distribution
. The sources of the electric and magnetic fields are

both, primary and return currents. The situation is complicated
by the fact that the present conductivities such as the brain tissue
and the skull differ by the order of 100. Following the lines of
Hämäläinenet al.[26], [27] and using the Ampére-Laplace law,
the forward MEG solution is obtained by the volume integral

(20)
where is the volume element, the Nabla-operator with
respect to , and the magnetic vacuum permeability. The
forward EEG solution is given by the boundary problem

(21)

which is to be solved numerically for an arbitrary head shape,
typically using boundary element techniques as presented in
[26], [27]. In particular, these authors showed that for the com-
putation of neuromagnetic and neuroelectric fields arising from
cortical sources, it is sufficient to replace the skull by a per-
fect insulator and therefore, to model the head as a bounded
brain-shaped homogeneous conductor. Three surfaces,
and , have to be considered at the scalp-air, the skull-scalp,
and the skull-brain interface, respectively, whereas the latter
provides the major contribution to the return currents. The 3-D
geometry of these surfaces can be obtained from MRI scans.
The inverse problem of the EEG and MEG is to estimate the
cerebral current sources underlying the measurements. It was
shown by Helmholtz in 1853 that a current distribution inside a
conductor cannot be retrieved uniquely from knowledge of the
electromagnetic fields outside. Hence, the inverse problem has
to be constrained in order to provide reasonable estimates of the
source locations. Typical constraints are assumptions about the
type of the sources, such as single or multiple dipoles which may
be either spatially fixed or rotating. Beam-forming approaches
which focus on cortical regions of interest or other biases such
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Fig. 5. The neural fields evoked by a transient stimulus distributed on the sphere (top row), inflated cortex (second row) and folded cortex (third row) for six
separate time points. The bottom panel shows the time course of the stimulus (red line) and the activation pattern for two individual sites on the spherical surface.

as hemodynamic responses as measured by the fMRI provide
other ways to restrict the range of allowable inverse solutions
(see [4] for a recent review).

IV. SIMULTANEOUS CORTICAL AND EEG/MEG DYNAMICS

To illustrate the simultaneously on-going dynamics on the
different levels of organization, that is, from ensembles to a pat-
tern of cortical activity and finally to macroscopic measures
such as EEG and MEG, we choose a simple example of in-
duced wave propagation along the cortical sheet. The connec-
tivity is spatially homogeneous and has an exponential falloff.
Only one functional unit, activated by the stimulus input, is de-
fined just anterior to the central sulcus, otherwise the neural
sheet is completely homogeneous and isotropic. For visualiza-
tion purposes, only one hemisphere is shown. The following nu-
merical values are used in the simulation: radius 2 of the
cortical surface , speed 3, connectivity function

and connectivity length
0.6, sigmoid function ,

and localization of stimulus input
with 0.05. Spatial units refer to 0.1 m and time units

to 100 ms.
At time 0, a stimulus signal is introduced at in

the cortical sheet following (17). Here, the convolutive filter
of (17) is set to where is the
Dirac delta function. In practical applications, such as evoked

potential and evoked field studies, the filter has to be
estimated. In the present case, the functional unit of (17)
has the same time course as the stimulus signalwhich is
an exponential increase until 160 ms, then followed by an
exponential decrease (plotted on the bottom of Fig. 5). The stim-
ulus excites the neural sheet at site, and initiates wave
propagation by means of a circular traveling wave front under-
going attenuation in space and in time. The time courses of the
neural ensembles at site and site , which is more distant
to the stimulus site, are shown. For several selected time points
the spatiotemporal activity patterns on the sphere are plotted in
the top row of Fig. 5. Here, and in the following the color code
represents MAX to MAX as blue goes through black to red
and yellow. In the rows below, the same neural activity patterns
are represented on the unfolded cortex and on the folded cortex
for the same time points after being mapped from the spherical
representation following Sections III-D and III-E. Note that the
circular traveling wave structure is preserved in both, the folded
cortical and the spherical coordinate system implying that the
error caused by the nonconformal coordinate transformation is
not very significant, at least for the present case of purely ho-
mogeneous connectivity.

For purposes of calculation of the forward EEG and MEG
solutions, we use a single layer head model (skull-brain) as de-
fined in Section III-F and a spherical head shape. The 3-D cur-
rent distribution is defined on the folded cortical surface located
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Fig. 6. The EEG (top row) and MEG (second row) forward solutions calculated at the same six time points as shown in Fig. 5. The activation patterns are plotted
on a spherical head model used in the forward calculation (10 cm diameter). The spherical head model is oriented such that the nose is to the left of the page and
the left side of the head is facing the reader. The location of the left cortical hemisphere used here is given within both the head of the subject (bottomleft) and
within the spherical model of the head (three views on the bottom right).

within the skull as illustrated on the bottom in Fig. 6 (upper skull
surface is not shown). The color coding on the cortical surface
reflects the local curvature at the vertices with blue and red indi-
cating convex and concave curvature, respectively. Note that the
cerebellum is not part of these surfaces and has been removed.
Adjacent are plotted the three cross sections of the voxel dis-
tributions showing the neural activity pattern color coded for

200 ms. EEG and MEG detectors are placed directly on the
spherical skull surface, infinitesimally close to each other. In
this study, we use 100 EEG electrodes and 100 MEG detectors.
For MEG, we assume radial gradiometers measuring the radial
component of the magnetic field. We calculate the forward
solutions of the EEG and MEG measured by these detectors fol-
lowing (20) and (21) and plot the resulting EEG (top row) and
MEG (second row) patterns for the selected times. Note that the
visualization is within the spherical system, the nose pointing
to the left, basically resembling the perspective shown in the
picture on the bottom left of Fig. 6. In both patterns, EEG and
MEG, a dipolar structure emerges with a maximum activity at
around 280 ms for the EEG and two maxima for MEG at around
200 and 360 ms. From Fig. 5 it is clear that the neural current

distribution is damped and flattens out as time evolves. How-
ever, the propagation of the neural wave front along the cortical
surface is such that the neuromagnetic forward solution not only
undergoes a spatial reorganization from 360 ms to 440 ms, but
also a temporal organization which does not map trivially on the
neural field activity.

It should be emphasized that the model presented here is not
a form of inverse solution that defines putative neural sources
associated with a particular experimental design and set of data.
The mapping of neural fields onto the folded cortex and the cal-
culation of the forward solution are performed for the purpose
of connecting cortical dynamics with neurophysiological and
behavioral findings. However, inverse solution techniques are
most important for the proper localization of individual func-
tional units on the folded cortical surface. Thereafter, the spa-
tiotemporal data that result from the model are purely a function
of the dynamics of the defined system and are not constrained by
observed data anymore. It is possible therefore, to define a single
dynamic model that can explain several different phenomena
that may arise by changing input/output patterns. That is, once
a model’s components such as geometry, cortical and skull sur-
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face, functional units and connectivity are established, then the
same model may generate qualitatively different data given dif-
ferent types of inputs or different output constraints. For ex-
ample, the theoretical and numerical study of impairments of
functional units will eventually become possible on the cortical
level, as well as on the levels of EEG/MEG and behavior.

V. FINAL REMARKS AND FUTURE DIRECTIONS

Here, we present a conceptual and methodological frame-
work for the development of a theoretical model of human brain
function and behavior that operates at multiple levels of descrip-
tion. Interconnected neural ensembles with homogeneous con-
nections represent a neural level, while a network or systems
level is defined by the interaction between heterogeneously con-
nected cortical regions. An even broader level is defined by the
computation of the spatiotemporal dynamics of EEG and MEG
generated by the model and the connection of these data to be-
havioral dynamics. For concreteness: what is the neural sub-
strate of the coupling between left and right finger within the bi-
manual coordination paradigm? Heterogeneous fiber tracts that
connect the cortical, subcortical and spinal subsystems involved
in coordination tasks still have to be implemented in our plat-
form. These pathways couple the subsystems and, thus, add to
their crosstalk and the resulting coordination dynamics. The het-
erogeneities introduce additional entries in the connectivity ma-
trix of the neural field [38] carrying the information on distance
and strength of coupling between areas. In the near future, devel-
oping technologies, such as diffusion tensor-weighted imaging,
promise to provide complete information of the white matter
tracts in the connectivity matrix of individual subjects [5], [56].
Developmental studies have reported that mirror movements
appear as normal phenomena in young children; such mirror
movements occur as mirror reversals of an intended movement
on the other side of the body and disappear after the first decade
of life, coinciding with the completion of myelination within
the corpus callosum [9], [70] and implying the involvement of
callosal fibers in bimanual crosstalk. These fibers are known to
transmit both inhibitory and excitatory influences [52] and are
generally topographic, that is, they go to homologous points in
the contralateral hemisphere. Also, the involvement of subcor-
tical structures and additional cortical areas during coordination
is known. For example, the cerebellum is activated ipsilaterally
during unimanual finger movements, but sometimes bilaterally
recruited during sequential unimanual movements [28]. Supple-
mentary motor areas also show increased activation (fMRI [29]
and positron emission tomography [58]) for bimanual than for
unimanual activity.

This collection of neurophysiological and anatomical facts
provides evidence for the neural structures which support the
coupling that mediates the information transfer during coordina-
tion, e.g., callosal fibers and cerebellar contributions. The chal-
lenge is to identify the anatomical basis contributing to the neu-
ronal and behavioral dynamics. On the other hand, from the dy-
namics’ perspective there are the descriptions and laws of co-
ordination on selected levels of organization: the dynamics of
the behavioral patterns and the dynamics of the corresponding
EEG and MEG patterns. A description in terms of neuronal

activity patterns aids in developing the first contacts between
generic pattern formation mechanisms and physiological quan-
tities. The 3-D basis, developed throughout this paper, finally
sets the stage on which noninvasive brain imaging techniques,
theory and modeling, as well as spatiotemporal data analysis
merge together to address questions in behavioral neuroscience.
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