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Abstract Neural activity as measured non-invasively

using electroencephalography (EEG) or magnetoencepha-

lography (MEG) originates in the cortical gray matter. In the

cortex, pyramidal cells are organized in columns and acti-

vated coherently, leading to current flow perpendicular to

the cortical surface. In recent years, beamforming algo-

rithms have been developed, which use this property as an

anatomical constraint for the locations and directions of

potential sources in MEG data analysis. Here, we extend this

work to EEG recordings, which require a more sophisticated

forward model due to the blurring of the electric current at

tissue boundaries where the conductivity changes. Using CT

scans, we create a realistic three-layer head model consist-

ing of tessellated surfaces that represent the cerebrospinal

fluid-skull, skull-scalp, and scalp-air boundaries. The cor-

tical gray matter surface, the anatomical constraint for the

source dipoles, is extracted from MRI scans. EEG beam-

forming is implemented on simulated sets of EEG data for

three different head models: single spherical, multi-shell

spherical, and multi-shell realistic. Using the same condi-

tions for simulated EEG and MEG data, it is shown (and

quantified by receiver operating characteristic analysis) that

EEG beamforming detects radially oriented sources, to

which MEG lacks sensitivity. By merging several tech-

niques, such as linearly constrained minimum variance

beamforming, realistic geometry forward solutions, and

cortical constraints, we demonstrate it is possible to localize

and estimate the dynamics of dipolar and spatially extended

(distributed) sources of neural activity.

Keywords Electroencephalography � EEG � Source

reconstruction � Inverse problem � Beamforming �
Boundary element method

Introduction

Non-invasive techniques such as electroencephalography

(EEG), magnetoencephalography (MEG), magnetic reso-

nance imaging (MRI), functional MRI (fMRI), positron

emission tomography (PET), and computed tomography

(CT) provide complementary measures of structure, func-

tion, and dynamics of the living human brain and have

proved essential for scientific research and clinical diag-

nostics. The zoo of imaging technologies is based on dif-

ferent physical principles and exploits different tissue

properties and physiological responses. MRI and fMRI

measure the level of water and the hemodynamic response

(changes in blood flow and level of oxygen in the blood

due to both intrinsic and task-induced properties of the

brain), respectively. The neural sources in the brain pro-

duce electric currents whose effects can be measured in the

form of magnetic fields outside the head (MEG) or electric

potentials on the scalp surface (EEG). These measurements

have the common primary goal of estimating the locations

of neural activity inside the brain. Functional MRI, when

compared to M/EEG, offers real 3-D imaging with high

spatial resolution but due to the nature of the hemodynamic
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response has very limited temporal resolution. In contrast,

M/EEG measures changes in electric and magnetic fields

with a sampling rate of 1,000 Hz. Typical brain activity of

interest ranges from 0.1 to 100 Hz (Nunez and Srinivasan

2006) even though the actual frequency range is much

larger. The main problem is to find the locations and

directions of the neural sources inside the brain from

electric potentials or magnetic fields measured on the

outside of the head. This so-called inverse problem cannot

be solved uniquely (von Helmholtz 1853) because infi-

nitely many source configurations can lead to the same

potential or magnetic field readings at the sensors.

Various approaches have been developed to obtain

inverse solutions by means of estimating neural activity

from M/EEG measurements. These include minimum norm

estimation (Gorodnitsky et al. 1992), dipole source analy-

sis/localization (DSL), which is implemented in commer-

cially available software packages, multiple signal

classification (MUSIC) (Mosher et al. 1992), independent

component analysis (ICA) (Delorme and Makeig 2004),

Lead-field-based imaging (Hämäläinen and Ilmoniemi

1994), and beamforming (van Veen et al. 1997; Robinson

and Vrba 1999).

Beamforming is a signal processing technique based on

the calculation of the covariance between signals at different

sensors, leading to sensor weights such that the array becomes

most sensitive to a certain location and direction inside a

volume, yet at the same time suppressing interference from

all other locations. Beamforming was initially developed for

radio and sound waves (Frost III 1972; Borgiotti and Kaplan

1979) and was later used for MEG source localization (van

Veen and Buckley 1988; Sekihara 1996; Robinson and Vrba

1999; Cheyne and Gaetz 2003; Cheyne et al. 2006). Appli-

cation of beamforming to EEG has also been reported

(Spencer et al. 1992; Ward et al. 1998; van Hoey et al. 1999;

Brookes et al. 2008; Wong and Gordon 2009).

Originally, MEG beamforming scanned the whole brain

or a region of interest on a grid of a certain size, where the

sources were assumed to be at the nodes of the grid,

leading to a 5 degree of freedom (dof) task: 3 dof for the

location and 2 for the direction of the source. This

dimensionality can be significantly reduced if anatomical

constraints are taken into account. It is well known that

most of the signals picked up by EEG or MEG are pro-

duced by simultaneous activation of tens of thousands of

neurons (Nunez and Srinivasan 2006) acting coherently in

the cortical gray matter (Braitenberg and Schüz 1991).

Furthermore, the pyramidal cells in the gray matter form

cell bundles, the macrocolumns, oriented perpendicular to

the surface. Taking these facts together, anatomically

constrained beamforming assumes all sources confined to

the cortical surface with a direction perpendicular to it as

shown in Fig. 1.

Here, we provide a detailed workflow of high-resolution

linearly constrained minimum variance (LCMV) beam-

forming with the cortex as an anatomical constraint,

adaptable to spherical and realistic forward solutions. The

novelty and potential significance of our approach is in the

combination of several well established techniques in a

way that has not been previously considered for source

localization using EEG. Moreover, the developed method,

while based on simulated EEG data, allows for comparison

of different forward solutions, comparison of EEG and

MEG, and for testing different dipole source configurations

including spatially extended regions (patches) of activity.

Inverse problem and forward solutions

Estimating source currents from observations of electro-

magnetic activity outside the brain is known as an inverse

problem. Such problems are generally ill-posed and cannot

be solved uniquely (von Helmholtz 1853). However, there

are methods that allow for finding locations of neural

activity with fairly good resolution, e.g., dipole source

localization, multiple signal classification, and, more

recently, beamforming. An accurate forward solution is a

required prerequisite for beamforming that essentially

calculates the overlap between the measured and expected

(theoretical) signal at the sensors.

An electromagnetic forward solution assumes a current

dipole (or a finite set of them) inside a volume and provides

the electric potential and/or magnetic field at the points of

interest (sensors). The magnetic field is not affected when

penetrating the various tissues inside the head, as their

relative permeability is l/l0 % 1 and can be calculated

Fig. 1 Dipoles representing neural activity sources for anatomically

constrained beamforming are assumed to be located on the cortical

surface with the direction perpendicular to the surface
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straightforwardly. In contrast, the propagation of the elec-

tric field (electric potential) depends on the conductivity of

the tissue and is greatly reduced and smeared at boundaries

between different tissue types. The conductivity of the

skull is about 100 times smaller than the conductivity of the

cerebrospinal fluid (CSF) and skin and therefore cannot be

neglected in the EEG forward solution. The EEG forward

solution is also affected by the shape of the tissue layer.

For comparison we consider three different head mod-

els: a single homogeneous sphere of constant conductivity,

a 3-layer concentric sphere model where the conductivity

of each layer is taken into account, and a 3-layer model that

is not restricted to a spherical shape and utilizes the real

geometry of the head created from a CT and MRI scan of

the subject. The explicit formulations and mathematical

details are given in ‘‘Appendix 2’’.

The forward solution for a dipole is represented by G, a

multidimensional (dimensionality given by the number of

sensors) vector of values of electric potential or magnetic

field strength at the sensors. The norm of this vector we call

the magnitude of the forward solution |G|. EEG and MEG

are complementary in the sense that |G| is different for

sources at different locations on the cortical surface. The

magnitude of the magnetic forward solution |G| calculated

using the spherical model (Appendix 1) everywhere on the

cortical surface is shown in Fig. 2a. The walls of sulci are

red to bright yellow, representing a high magnitude of the

forward solution. Plotted in light blue are the values close

to zero, which means that dipoles that are radial (i.e., top of

gyri) produce a much weaker signal at the sensors. In

contrast, the electroencephalogram is sensitive to both

radial and tangential sources as shown in Fig. 2b. More-

over, EEG is most sensitive to the radial sources located on

top of the gyri, because these sources generate a stronger

and more focused electric potential at the scalp.

Anatomy of the human head and surface extraction

Though human brains have structural similarities across

different subjects, variations in volume, shape of the head,

and complexity of the cortical folds make every brain

unique. In addition, the shape of the skull is also unique.

Therefore, to accurately estimate the neural activity in

electroencephalography, both, anatomical (such as the

cortical surface and skull/skin interfaces) and electro-

physiological data must be obtained from the same

subject.

The EEG forward solution model (Stok et al. 1987;

Mosher et al. 1999) used in the present paper (described in

details in ‘‘Multi-shell case (realistic geometry)’’) assumes

a multi-shell head model constructed from the cortical

surface, CSF, skull, and scalp. Attenuation and smearing of

the EEG signal happens at the interfaces between layers

with different conductivities, primarily at the skull-scalp

interface (Nunez and Srinivasan 2006). The thickness of

the skull in different regions of the head is also important.

One way to obtain the head surfaces is to use computed

tomography (CT). The CT scan shows bone bright and

easily recognizable (Fig. 3b) compared to an MRI scan

(Fig. 3a), where the bone appears diffusely dark. There-

fore, CT is more reliable for identifying bone structure.

Moreover, even though automated scripts like ‘‘Freesurfer’’

(Dale et al. 1999; Fischl et al. 1999) can give an estimate

of the inner and outer bone surfaces, we chose to create our

own tessellation because it allowed for more flexible con-

trol over certain regions, like the bottom of the head. The

skin surface, also extracted from the CT scan, serves as a

constraint for the EEG electrode locations.

The resulting surface tessellations (648 vertices each) of

the CSF (blue), skull (yellow), and skin (red) are shown in

Fig. 4. The bottom of each surface is closed artificially to

satisfy the BEM requirement of closed surfaces and at the

same time to have the gray matter fully inside the CSF

volume. This construction and tesselation size of 648

vertices are justified by the fact that we are interested only

in the electric potential interpolated at 122 EEG sensor

locations shown as green dots overlaying the scalp surface.

The brain surface or gray-white matter boundary (shown in

gray in Fig. 4) is obtained using the software package

‘‘Freesurfer’’ and consists of approximately 284,000 ver-

tices and 568,000 triangles.

(a) (b)

Fig. 2 MEG (a) and EEG

(b) forward solution magnitudes

plotted on the cortical surface.

Normalized relative magnitudes

depend on dipole source

location and direction. Yellow
indicates high values, cyan
indicates values close to zero
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EEG beamforming: simulations

In a first step, we apply the beamforming method1 to EEG

from a single dipole source, patterns of which are shown in

Fig. 5. This dataset (as for all simulated EEG datasets in

this study) is created by activating a certain electric dipole

(or a set of them) with a time course, for instance, a

damped oscillator function. In order to make the simulated

data more realistic, two types of noise are added onto the

source and its environment (the rest of the brain). For the

former, white noise of 14 dB is added to the dipole moment

amplitude, whereas the latter is implemented by activating

a randomly chosen set of 100 dipoles at each time step. The

dataset is obtained by using the superposition principle of

electric fields, which allows to merge the forward solutions

from the source dipoles with the forward solutions of the

randomly activated currents. The signal-to-noise ratio in

our simulations is defined as 20 log AS

AN
; where AS and AN

are the amplitudes of the signal and the noise respectively

and was kept in the range of 12–16 dB.

Calculation of the neural activity index Na and recon-

structed time series Xrec
H ðtÞ starts with the covariance

matrix C, the components of which are

Cij ¼
1

T

ZT

0

XiðtÞXjðtÞdt ð1Þ

where Xi(t) is the time series at the ith EEG electrode.

In order to calculate the beamformer weights HH we

need the inverse of the covariance matrix C-1 and the

forward solutions GH from all locations H on the cortical

surface. The latter is pre-calculated for different head

models and the former requires the addition of a regulari-

zation parameter to the diagonal in order to be invertible.

The beamformer weights are then obtained from

HH ¼
C�1GH

GH � C�1GH
ð2Þ

and the neural activity index Na is calculated as

Na ¼
GH � C�1GH

GH � C�1RC�1GH
ð3Þ

where R is the noise covariance matrix. The reconstructed

time series reads

Xrec
H ðtÞ ¼ XðtÞ �HH ð4Þ

where HH are the beamformer weights calculated for the

location and direction H and X(t) is the EEG signal at the

electrodes.

An example of a beamformer reconstruction of neural

activity is shown in Fig. 6. We consider a source dipole

placed in the left hemisphere on the white matter surface at

location H with a direction perpendicular to that surface.

The source is given a time series Xorig
H ðtÞ (middle)—a

damped oscillator with additive white noise. The hemi-

spheres in Fig. 6 are arranged in a continuous fashion

(from left to right: left hemisphere is anterior-to-posterior,

right hemisphere is posterior-to-anterior) such that the

bottom graph, representing the neural activity index Na in

arbitrary units, is plotted as a function of the longitudinal

coordinate of the vertices on the cortical surface of a given

hemisphere. The threshold for the values of Na when

plotted on the cortical surface is the average of Na plus

three standard deviations ( �Na þ 3r).

Visual inspection of the graph of the neural activity

index in Fig. 6 (bottom) allows us to determine the number

and approximate location of regions with a signal strength

significantly larger than the mean activity of the rest of the

brain. It also gives an estimate of the signal-to-noise ratio

Fig. 3 MRI scan (a) provides the brain tissue structure, CT scan

(b) can be used to extract the skull and scalp surfaces

Fig. 4 Head surfaces constructed from MRI and CT scans (red scalp,

yellow skull, blue CSF, gray gray matter). EEG electrodes are shown

as green dots

1 For explicit formulations see ‘‘Appendix 3’’.

518 Exp Brain Res (2011) 214:515–528

123



and how the detected activity is spread out in the space

surrounding the source. Neural activity index values are

plotted color coded (with a threshold to remove the noise)

on the cortical surface (top), and blow-ups are provided for

better visualization of the detected local activity around the

dipole.

Fig. 5 Simulated EEG patterns:

single dipole source located in

the left hemisphere as shown in

Fig. 6. Time steps (arbitrary

scale) run from top left to

bottom right

Fig. 6 Neural activity index: single dipole source. The time course of

the source current (at the location in the left hemisphere as shown) is

a damped oscillator with noise. The neural activity index Na is plotted

on the cortical surface (top) and as a function of the vertex coordinate

in the longitudinal direction (bottom). The threshold for the values of

Na when plotted on the cortical surface is the average of Na plus three

standard deviations ( �Na þ 3r)
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The neural activity index in Fig. 6 has a single sharp

spike, which corresponds to the location of the dipole

source in the left hemisphere, and a series of smaller spikes

corresponding to sources with a similar forward solution.

The reconstructed time series is plotted below the original

and reproduces the damped oscillatory function and its

frequency.

Figure 7 shows examples of the neural activity index,

calculated from a simulated EEG dataset using two (a) and

three (b) dipoles as main sources of the electric activity

superimposed with the randomly activated locations on the

cortical surface. The time series of the source dipoles are

damped oscillators with noise and a phase shift. Since the

beamforming algorithm is based on the calculation of the

covariance matrix of the signal from the EEG electrodes,

the activity index will likely fail to distinguish between

source locations if any of the dipoles’ dynamics have

strong temporal correlations. This is especially the case for

dipoles that are spatially close and/or parallel sources. For

three dipoles, it is not sufficient to introduce another shift

of the oscillatory time series, because in that case, one of

the damped sinusoidal functions can always be represented

as a linear combination of the other two and the neural

activity index will only be able to detect two out of three

locations. Therefore, in order to create uncorrelated sour-

ces, we use a different frequency for one of the source

dipoles. An example with three dipoles is shown in Fig. 7b.

The neural activity index shows three regions of activity,

and the time series are reconstructed accurately.

As a next step in the beamformer simulations, we

assume certain regions on the cortical surface, modeled by

a number of dipoles, to be activated with the same time

course for all sources within the patch. For example, if we

consider a dipole in the left hemisphere and all its nearest

neighbors, then a total of nine dipoles will form a patch and

have the same dynamics. The neural activity index in

Fig. 8 is calculated on a simulated EEG set, using two

patches of nine dipoles each. We found that the highest

value corresponds to the center of the patch, which implies

that the sources surrounding the center dipole amplify the

signal from the center of the patch. The time series of each

of the nine dipole sources within each patch after recon-

struction shows that the dynamical behavior is close to the

original damped oscillator with noise.

EEG beamforming: realistic versus spherical head

models

For a comparison of the different head models, we calcu-

lated EEG forward solutions for all three methods men-

tioned before: single-sphere, multi-sphere, and boundary

element method. Figure 9 shows examples of forward

solutions for a single dipole source in the left hemisphere

for the different models. The single-sphere model, shown

in Fig. 9a, does not take the conductivity of the skull into

account and, as a result, provides a more localized distri-

bution of the electric potential compared to the other

models and due to its assumptions is unable to provide

realistic results. Figures 9b and 9c represent forward

solutions calculated for the concentric spheres geometry

but using two different methods: infinite sum and boundary

elements. As can be seen from the graphs and also verified

by quantitative comparison, these two methods provide

identical results. The boundary element method applied to

the realistic geometry, shown in Fig. 9d, not only gives a

more realistic EEG forward solution but also improves the

accuracy of the beamforming source reconstruction when

compared to spherical models. This can be demonstrated

by using the spherical forward solutions to calculate the

beamformer weights from a dataset created with the real-

istic geometry model. When using spherical models, the

regions that are expected to be more or less accurate are the

frontal and occipital lobes as they are at similar distances to

the skull surface in both spherical and realistic geometries.

On the other hand, since the brain is not spherical, the

temporal lobes are expected to be the source of the largest

error. Figure 10a shows the activity estimated using

spherical beamforming on a realistic EEG signal and the

source appears to be widespread. For comparison, realistic

geometry beamforming, as shown in Fig. 10b, provides a

much more localized estimate.

EEG beamforming: radial sources

An important practical advantage of EEG beamforming

can be seen by investigating how source reconstruction is

affected by the location and orientation of the source. To

this end, we compare EEG versus MEG beamforming

applied to both radial and tangential sources. The results

are shown in Fig. 11, where it is evident that EEG

beamforming analysis detects strong activity coming from

both source locations. In contrast, MEG beamforming is

only capable of detecting the tangential source. This

result suggests that EEG beamforming may become a

valuable addition to MEG and fMRI source localization

methods.

Moreover, the plot of the EEG neural activity index in

Fig. 11 shows that the radial source is localized with higher

accuracy compared to the tangential source. This is due to

the fact that EEG is most sensitive to currents located on

top of gyri as shown earlier in Fig. 2, i.e., to the sources

closest to the surface of the skull, the directions of which

are mostly radial. Radial sources produce higher values of

the electric potential on the scalp surface and therefore

520 Exp Brain Res (2011) 214:515–528
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have a higher magnitude of the forward solution, which

leads to a better signal-to-noise ratio. In addition, the

electric potential created by tangential currents takes a path

almost parallel to the skull (Nunez and Srinivasan 2006),

which causes higher angular deflection and the potential on

the scalp to be more smeared out and attenuated. This set of

conditions renders radial currents more favorable for EEG

beamforming and the activity index more accurate.

(a)

(b)

Fig. 7 Neural activity index: two (a) and three (b) dipole sources.

The time courses feature phase and frequency shifts. The neural

activity index is plotted on the cortical surface and as a function of the

vertex coordinate in the longitudinal direction (below in black). The

threshold for the values of Na when plotted on the cortical surface is

the average of Na plus three standard deviations ( �Na þ 3r)
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Fig. 8 Neural activity index: two patches of nine source dipoles. The

time course for all dipoles within a patch is a damped oscillator with

noise. Time courses between the patches are different by a phase shift

of p/2 rad. The threshold for the values of Na when plotted on the

cortical surface is the average of Na plus three standard deviations

( �Na þ 3r)

(a) (b) (c) (d)

Fig. 9 Comparison of EEG forward solutions for different head

models with a dipolar current source in the left hemisphere. Forward

solutions are calculated using (a) single-sphere model, (b) multi-

sphere model, and the boundary element method (BEM) applied to

both multi-sphere (c) and realistic geometries (d)

Fig. 10 Comparison of the electric activity (red) detected from a single source (green arrow) when multi-spherical (a) and realistic geometry

(b) forward solutions are used. The realistic geometry model offers a more accurate source reconstruction
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A good way to quantify the accuracy of the source

reconstruction is receiver operating characteristic (ROC)

analysis. The ROC is a graph of sensitivity (true positive

rate) versus 1-specificity (false positive rate) and is widely

used for evaluating and comparing different models as well

as for determining the cutoff values for classification cri-

teria. Figure 12 shows ROC curves for EEG and MEG

beamforming (Darvas et al. 2004). These curves were

calculated by applying the beamforming algorithm to 1,000

simulated EEG (MEG) data sets, each of which was based

on a single dipole source randomly positioned on the cor-

tical surface. Then, we apply a global threshold (measured

in multiples of the standard deviation from the mean) to the

neural activity index from each of these simulations, which

defines the number of positives and negatives. The ROC

curves are then obtained by varying the threshold and

recording the corresponding true positive and false positive

rates. As can be seen, the area under the EEG curve is close

to 1, which means that all but a few sources are identified

correctly, while in the MEG curve the false positive rate

starts to increase around a true positive rate of 0.75, which

means that about 25% of the dipoles (mostly radial sour-

ces) are below the noise level and could not be detected.

The ROC analysis justifies our choice of the threshold for

plotting the neural activity index �Na þ 3r; which leads to a

false positive rate smaller than 5% or P \ 0.05.

Conclusions

The present research adopts a comprehensive approach to

localizing distributed sources of neural activity and their

dynamics in EEG signals by merging together a number of

techniques such as beamforming, realistic geometry for-

ward solutions, and cortical constraints. EEG source

reconstruction accuracy is significantly affected by the

blurring of the electric potential when passing through the

skull. This is especially the case in EEG beamforming,

where an accurate forward solution is important. Spherical

head models, popular in many applications because of fast

processing speeds, do not take the shape and thickness of

the head tissues into account. To address this issue, we

created a realistic multi-shell head model from CT scans,

which allows for the EEG forward solution to be calculated

using a boundary element method. Beamforming based on

the BEM forward solution becomes computationally

expensive for spatial resolution of the source reconstruc-

tion approaching 1 mm and requires additional assump-

tions to be made.

Fig. 11 Neural activity index:

MEG beamforming versus EEG

beamforming. MEG is

insensitive to the radial source.

The neural activity index is

plotted on the cortical surface

and as a function of the vertex

coordinate in the longitudinal

direction (bottom). The

threshold for the values of Na

when plotted on the cortical

surface is the average of Na plus

three standard deviations

( �Na þ 3r)
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Fig. 12 Receiver operating characteristic (ROC) curves. The num-

bers represent the global threshold of the neural activity index

measured in multiples of standard deviation from the mean. See text

for details
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The neural sources that are known to be the generators

of the EEG and MEG are concentrated in the cortical gray

matter. Using MRI scans, we extracted the cortical surface

and constrained all potential current sources, modeled as

dipoles, to the surface of the gray-white matter interface.

Imposing these anatomical constraints allows to reduce the

dimensionality and to improve the spatial resolution of

source reconstruction without major increase in computa-

tion time. The proposed technique was tested with different

source configurations. EEG data were simulated at every

point in time by superimposing the forward solutions from

the main sources (dipoles with a damped oscillatory

amplitude) and randomly active dipoles across the brain

surface. In the analysis shown in Figs. 6, 7 and 8, we

demonstrated the performance of the EEG beamformer in

configurations of one, two, and three dipoles, and when the

neural activity was spatially extended. Moreover, we also

showed that the temporal dynamics of the sources can be

reconstructed, revealing the original damped oscillatory

behavior. Finally, we compared MEG and EEG beam-

forming and confirmed that in contrast to MEG, EEG

allows for a detection of radial sources. The results of this

work allow us to conclude that the proposed anatomically

constrained beamforming procedure along with realistic

geometry and conductivity-based forward solutions pro-

vides a viable and quite accurate approach to the inverse

problem in EEG.

Acknowledgments This work was supported by NIMH grant

080838 and NINDS grant 48299 (JASK). The authors would like to

thank Dr. Douglas Cheyne for helpful discussions. An earlier version

of this research was presented as a poster (687.9) at the Society for

Neuroscience meeting held in Chicago, IL, October 17-21, 2009.

Appendix 1: MEG forward solution

For locations outside, a spherical conductor the magnetic

field can be calculated according to Sarvas (1987)

BðrÞ ¼ l0

4pF2ðr; rqÞ
fFðr; rqÞq� rq � ½q� rq � r�rFðr; rqÞg

ð5Þ

where r and rq are the sensor and source locations,

respectively, and q is the dipole direction as shown in

Fig. 13. The scalar function F(r, rq) and its gradient

rF(r, rq) are given by

Fðr; rqÞ ¼ d rd þ r2 � rq � r
� �

ð6Þ

rFðr; rqÞ ¼
d2

r
þ d � r

d
þ 2d þ 2r

� �
r

� d þ 2r þ d � r
d

� �
rq ð7Þ

It is commonly known that MEG has reduced sensitivity

to radial sources (due to field cancelation by secondary

currents) and is mostly generated by the sources located in

the walls of cortical sulci. As can be seen, Sarvas’ formula

(Eq. 5) contains two cross-products q 9 rq, leading to

B(r) = 0 for a radial source in a spherical conductor (qkrq)

independent of sensor and source location.

Appendix 2: EEG forward solution

Single spherical conductor

For a single spherical conductor, the electric potential on

the scalp at the sensor locations can be expressed in closed

form (Mosher et al. 1999)

Vsðr; rq;qÞ ¼
q cosa
4pr

2ðr cos c� rqÞ
d3

þ 1

rqd
� 1

rrq

� �

þ q sina
4pr

cosb sin c
2r

d3
þ dþ r

rdðr� rq cos cþ dÞ

� �

ð8Þ

where the radius of the sphere is r = |r|, the distance

between the sensor at r and the dipole location at rq is

d = |r - rq| and the angles a, b and c are as defined in

Fig. 13.

Multi-sphere case

The multi-spherical forward solution requires the evalua-

tion of an infinite sum (Zhang 1995) and the potential on

the outermost (mth) surface reads

Vmðr; rq; qÞ ¼
q

4prmr2

X1
n¼1

2nþ 1

n

rq

r

� �n�1

fn

� n cos aPnðcos cÞ þ cos b sin aP1
nðcos cÞ

� 	
ð9Þ

where Pn and Pn
1 are the Legendre and associated Legendre

polynomials, respectively, and

Fig. 13 Geometry of sensor and source: the source q is located at

rq, the sensor is at r. The angle between q and rq is denoted as a, the

angle between r and rq as c, and the angle between the planes formed

by (r, rq) and (q, rq) is denoted as b (not shown). The vector from the

dipole to the sensor is d
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fn ¼
n

m22 þ ð1þ nÞm21

ð10Þ

The coefficients m22 and m21 are found from

M¼
m11 m12

m21 m22

� �
¼ 1

ð2nþ1ÞM�1

�
Ym�1

k¼1

nþðnþ1Þrk

rkþ1
ðnþ1Þ rk

rkþ1
�1

� �
rq

rk

� �2nþ1

n rk

rkþ1
�1

� �
rk

rq

� �2nþ1

ðnþ1Þþ nrk

rkþ1

0
B@

1
CA

ð11Þ

In numerical calculations, the infinite series (Eq. 9) was

found to converge before n = 20 and was truncated at this

point. The matrices in Eq. 11 are non-commuting and the

matrix with the highest index number is to be applied first,

i.e., on the leftmost side. The most commonly used

spherical multi-shell head model includes three layers:

cerebrospinal fluid, skull, and scalp, which leads to m = 3.

Multi-shell case (realistic geometry)

The interfaces between the regions of different conductiv-

ity, as shown in Fig. 14, will be denoted by S1; . . .; Sm; with

S1 circumventing all the remaining surfaces, i.e., S1 is the

scalp. It can be shown that the electric potential V at r 2 Si

obeys the Fredholm integral equation (Mosher et al. 1999)

ðr�i þ rþi ÞVðrÞ ¼ 2V0ðrÞ þ
1

2p

Xm

j¼1

ðr�j � rþj Þ
Z

Vðr0ÞdXrðr0Þ
ð12Þ

Here, the conductivities inside and outside the surface Sj

are denoted by rj
- and rj

?, respectively. The solid angle

dXrðr0Þ subtended at the location r by a surface element dS

at r0 is given by

dXrðr0Þ ¼
ðr0 � rÞ
r0 � rj j3

� dSjðr0Þ

and

V0ðrÞ ¼
1

4pr0

Z
d3r0
r0 � jðr0Þ

r0 � rj j

is the potential caused by the current j in an infinite

homogeneous medium with conductivity r = 1. To solve

(Eq. 12) numerically, the surfaces Si are divided into

triangles Di
k; resulting in a set of linear equations

Vi ¼
Xm

j¼1

BijVj þ gi ; i ¼ 1; . . .;m ð13Þ

where the matrices Vi, gi, and Bij are defined by

Vi
k ¼

1

li
k

Z

Di
k

VðrÞdSi

gi
k ¼

1

li
k

2

r�i þ rþi

Z

Di
k

V0ðrÞdSi

Bij
kl ¼

1

2p
1

li
k

Cij

Z

Di
k

XDj
l
ðrÞdSi

ð14Þ

Here i and j are the index numbers of the surfaces and k and l are

the index numbers of the triangles on the surfaces. In

addition, lk
i is the area of the kth triangle Di

k on the surface Si

and XD j
l

is the solid angle subtended by the triangle D j
l at the

position of the center of the triangle Di
k. For k = l and i = j we

have XD j
l
¼ 0. The number of triangles on each surface Sj is

denoted by nj and
P

j=1
m nj = N. The multipliers Cij are given by

Cij ¼
r�j � rþj
r�i þ rþi

ð15Þ

We consider a three-layer head model with surfaces

Si, where i = 1 for the scalp, i = 2 for the skull, and

i = 3 for the cerebrospinal fluid/brain. Now, we calculate

the coefficients Bkl
ij in Eq. 14 using for the solid angle of a

plane triangle (van Oosterom and Strackee 1983)

XD j
l
ðrc

i
kÞ¼

2R1 � ðR2�R3Þ
R1R2R3þðR1 �R2ÞR3þðR1 �R3ÞR2þðR2 �R3ÞR1

ð16Þ

with Ri = |Ri|. The source gk
i in Eq. 13 is defined by the

dipole

gi
k ¼

1

2pðr�i þ rþi Þ
X

r0

r0 � jðr0Þ
jr� r0j : ð17Þ

The solution of (Eq. 12) in the case of three surface layers

can be represented by

V ¼
V1

V2

V3

0
@

1
A ¼

W1

W2

W3 þW3
0

0
@

1
A ð18Þ

Fig. 14 Concentric multi-shell surfaces in the boundary element

method. The surfaces are labeled from 1 (outermost) to m (innermost)
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where the term W0
3 has been added to avoid numerical

problems and represents the potential on the surface of a

homogeneous conductor bounded by surface S3

(Hämäläinen and Sarvas 1989)

W3
0 ¼

B33

C33
� 1

n3

� �
W3

0 þ
r�3 þ rþ3

r�3
g3 ð19Þ

The unknown functions Wi can be found by solving the

system of linear equations

W ¼
W1

W2

W3

0
@

1
A ¼ Bij � 1

n1 þ n2 þ n3

� �
W þ rþ3

h1

h2

h3

0
@

1
A

ð20Þ

where

h1 ¼ g1

r�3
; h2 ¼ g2

r�3
; h3 ¼ g3

r�3
� 2

r�3 þ rþ3
W3

0

To solve (Eq. 19) for Wk
i , we rewrite it in the form

I� B33

C33

þ 1

n3


 �
W3

0 ¼
r�3 þ rþ3

r�3
g3 ð21Þ

where I is the identity matrix and the scalar 1
n3

is added to

all elements of I� B33

C33
: The solution of this system of linear

equations together with the set of equations (Eq. 20) is then

used to find the unknown vector W

I� Bij þ 1

n1 þ n2 þ n3


 �
W ¼ rþ3 h: ð22Þ

Numerical calculations start with the geometry matrix Bij

in (Eq. 14). The time to calculate this matrix depends on

the number of vertices in the tesselation and can be com-

putationally expensive, but it has to be performed only

once per subject. Then, a source dipole is placed inside the

innermost volume, and the potential on all three surfaces is

calculated using (Eq. 18).

Appendix 3: Linearly constrained minimum variance

(LCMV) beamforming

MEG or EEG data from an array of sensors can be repre-

sented by a time dependent vector X(t). In LCMV beam-

forming (Frost III 1972; van Veen and Buckley 1988), the

signal SHðtÞ measured by X(t) that originates from a source

at H is given by SHðtÞ ¼ HH � XðtÞ where H ¼
ðx; y; z;w;/Þ is a 5-dimensional quantity, which represents

the location and direction of the current source, and HH are

the beamforming weights. The global source power origi-

nating from H reads

S2
H ¼

1

T

ZT

0

HH � XðtÞf g2dt

¼ 1

T

ZT

0

dt
XM
i¼1

HHiXiðtÞ
( )2

¼
XM
i¼1

XM
j¼1

HHiHHj
1

T

ZT

0

XiðtÞXjðtÞdt

|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
Cij

ð23Þ

where i, j represent the index number of a sensor and Cij is

the correlation matrix. Using C, the global source power

originating from H can be written in the compact form

S2
H ¼

XM
i¼1

XM

j¼1

CijHHiHHj ¼ HH � CHH: ð24Þ

The beamformer weights HH are determined such that

the total power over a certain time span becomes a

minimum under the constraint that the signal originating

from H; the forward solution GH multiplied by the

beamformer weights HH; remains constant, i.e.,

S2
H ¼

1

T

ZT

0

fHH � XðtÞg2dt ¼ HH � CHH ! min ð25Þ

with the constraint SH ¼ HH �GH ¼ 1:

The problem (Eq. 25) is solved using the method of

lagrange multipliers (Frost III 1972; Fuchs 2007), a well-

known method from classical mechanics. To this end, we

write the constraint as

HH �GH � 1 ¼ 0 ð26Þ

then, multiply it by a constant k and add it to the global

source power S2
H

S2
H ¼

XM
i¼1

XM

j¼1

CijHHiHHj þ k
XM
i¼1

HHiGHi � 1

( )
! min

ð27Þ

Now, the source power is minimized by taking the

derivative of S2
H with respect to HH and solve

oSH

oHHk
¼ 2

XM

i¼1

CikHHi þ kGHk ¼ 0 ð28Þ

for HH. Equation 28 in matrix form reads

2CHH ¼ �kGH ð29Þ

which results in
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HH ¼ �
k
2

C�1GH: ð30Þ

The unknown Lagrange multiplier is found by using the

constraint (Eq. 26) again, leading to

� k
2

C�1GH


 �
�GH ¼ 1 or k ¼ �2 GH � C�1GH

� ��1

ð31Þ

Now, (Eq. 31) is inserted into the solution (Eq. 30) and the

beamformer coefficients obtained as

HH ¼
C�1GH

GH � C�1GH
ð32Þ

along with the global source power

S2
H ¼ HH � CHH ¼ GH � C�1GH

� ��1 ð33Þ

The so-called global neural activity index Na is then

calculated for every location and direction H and serves as

a relative measure of activity originating from H. Na can be

calculated in different ways as distinguished by Huang

et al. (2004). According to this classification, we used the

type III activity index, defined as

Na ¼
GH � C�1GH

GH � C�1RC�1GH
ð34Þ

where R is the covariance matrix of the noise. R can be

estimated from baseline data or chosen as a constant times

the identity matrix.
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