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Glossary

Control parameter A parameter of internal or external
origin that when manipulated controls the system
in a nonspecific fashion and is capable of inducing
changes in the system’s behavior. These changes may
be a smooth function of the control parameter, or
abrupt at certain critical values. The latter, also referred
to as phase transitions, are of main interest here as they
only occur in nonlinear systems and are accompanied
by phenomena like critical slowing down and fluctua-
tion enhancement that can be probed for experimen-
tally.

Haken–Kelso–Bunz (HKB) model First published in
1985, the HKB model is the best known and probably
most extensively tested quantitative model in human
movement behavior. In its original form it describes
the dynamics of the relative phase between two os-
cillating fingers or limbs under frequency scaling. The
HKBmodel can be derived from coupled nonlinear os-



Movement Coordination M 5719

cillators and has been successfully extended in various
ways, for instance, to situations where different limbs
like an arm and a leg, a single limb and a metronome,
or even two different people are involved.

Order parameter Order parameters are quantities that
allow for a usually low-dimensional description of the
dynamical behavior of a high-dimensional system on
a macroscopic level. These quantities change their val-
ues abruptly when a system undergoes a phase transi-
tion. For example, density is an order parameter in the
ice to water, or water to vapor transitions. In move-
ment coordination the most-studied order parameter
is relative phase, i. e. the difference in the phases be-
tween two or more oscillating entities.

Phase transition The best-known phase transitions are
the changes from a solid to a fluid phase like ice to wa-
ter, or from fluid to gas like water to vapor. These tran-
sitions are called first-order phase transitions as they
involve latent heat, which means that a certain amount
of energy has to be put into the system at the transition
point that does not cause an increase in temperature.
For the second-order phase transitions there is no la-
tent heat involved. An example from physics is heating
a magnet above its Curie temperature at which point it
switches from a magnetic to a nonmagnetic state. The
qualitative changes that are observed in many non-
linear dynamical systems when a parameter exceeds
a certain threshold are also such second-order phase
transitions.

Definition of the Subject

Movement Coordination is present all the time in daily
life but tends to be taken for granted when it works. One
might say it is quite an arcane subject also for science.
This changes drastically when some pieces of the locomo-
tor system are not functioning properly because of injury,
disease or age. In most cases it is only then that people
become aware of the complex mechanisms that must be
in place to control and coordinate the hundreds of mus-
cles and joints in the body of humans or animals to al-
low for maintaining balance while maneuvering through
rough terrains, for example. No robot performance comes
even close in such a task.

Although these issues have been around for a long time
it was only during the last quarter century that scientists
developed quantitative models for movement coordina-
tion based on the theory of nonlinear dynamical systems.
Coordination dynamics, as the field is now called, has be-
come arguably the most developed and best tested quanti-
tative theory in the life sciences.

More importantly, even though this theory was orig-
inally developed for modeling of bimanual finger move-
ments, it has turned out to be universal in the sense that it
is also valid to describe the coordination patterns observed
between different limbs, like an arm and a leg, different
joints within a single limb, like the wrist and elbow, and
even between different people that perform movements
while watching each other.

Introduction

According to a dictionary definition: Coordination is the
act of coordinating, making different people or things
work together for a goal or effect.

When we think about movement coordination the
“things” we make work together can be quite different like
our legs for walking, fingers for playing the piano, mouth,
tongue and lips for articulating speech, body expressions
and the interplay between bodies in dancing and ballet,
tactics and timing between players in team sports and so
on, not to forget other advanced skill activities like skiing
or golfing.

All these actions have one thing in common: they look
extremely easy if performed by people who have learned
and practiced these skills, and they are incredibly difficult
for novices and beginners. Slight differences might exist
regarding how these difficulties are perceived, for instance
when asked whether they can play golf some people may
say: “I don’t know, let me try”, and they expect to out-drive
Tiger Woods right away; there are very few individuals
with a similar attitude toward playing the piano.

The physics of golf as far as the ball and the club is
concerned is almost trivial: hit the ball with the highest
possible velocity with the club face square at impact, and
it will go straight and far. The more tricky question is
how to achieve this goal with a body that consists of hun-
dreds of different muscles, tendons and joints, and, im-
portantly, their sensory support in joint, skin and muscle
receptors (proprioception), in short, hundreds of degrees
of freedom. How do these individual elements work to-
gether, how are they coordinated? Notice, the question is
not how do we coordinate them? None of the skills men-
tioned above can be performed by consciously controlling
all the body parts involved. Conscious thinking sometimes
seems to do more harm than good. So how do they/we
do it? For some time many scientists sought the answer to
this question in what is calledmotor programs or, more re-
cently, internal models. The basic idea is straightforward:
when a skill is learned it is somehow stored in the brain
like a program in a computer and simply can be called
and executed when needed. Additional learning or train-
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ing leads to skill improvement, interpreted as refinements
in the program. As intuitive as this sounds and even if one
simply ignores all the unresolved issues like how such pro-
grams gain the necessary flexibility or in what form they
might be stored in the first place, there are even deeper rea-
sons and arguments suggesting that humans (or animals
for thatmatter) don’t work like that. One of the most strik-
ing of these arguments is known as motor equivalence: ev-
erybody who has learned to write with one of their hands
can immediately write with the foot as well. This writing
may not look too neat, but it will certainly be readable
and represents the transfer of a quite complex and diffi-
cult movement from one end-effector (the hand) to an-
other (the foot) that is controlled by a completely different
set of muscles and joints. Different degrees of freedom and
redundancy in the joints can still produce the same output
(the letters) immediately, i. e. without any practice.

For the study of movement coordination a most im-
portant entry point is to look at situations where themove-
ment or coordination pattern changes abruptly. An exam-
ple might be the well-known gait switches from walk to
trot to gallop that horses perform. It turns out, however,
that switching among patterns of coordination is a ubiq-
uitous phenomenon in human limb movements. As will
be described in detail, such switching has been used to
probe human movement coordination in quantitative ex-
periments.

It is the aim of this article to describe an approach to
a quantitative modeling of human movements, called co-
ordination dynamics, that deals with quantities that are ac-
cessible from experiments and makes predictions that can
and have been tested. The intent is to show that coordi-
nation dynamics represents a theory allowing for quanti-
tative predictions of phenomena in a way that is unprece-
dented in the life sciences. In parallel with the rapid de-
velopment of noninvasive brain imaging techniques, co-
ordination dynamics has even pointed to new ways for the
study of brain functioning.

The Basic Law of Coordination: Relative Phase

The basic experiment, introduced by one of us [27,28], that
gave birth to coordination dynamics, the theory underly-
ing the coordination of movements, is easily demonstrated
and has become a classroom exercise for generations of
students: if a subject is moving the two index fingers in so-
called anti-phase, i. e. one finger is flexing while the other is
extending, and then the movement rate is increased, there
is a critical rate where the subject switches spontaneously
from the anti-phase movement to in-phase, i. e. both fin-
gers are now flexing and extending at the same time. On

the other hand, if the subject starts at a high or low rate
with an in-phase movement and the rate is slowed down
or sped up, no such transition occurs.

These experimental findings can be translated or
mapped into the language of dynamical systems theory as
follows [19]:
! At low movement rates the system has two stable at-

tractors, one representing anti-phase and one for in-
phase – in short: the system is bistable;

! When the movement rate reaches a critical value, the
anti-phase attractor disappears and the only possible
stable movement pattern remaining is in-phase;

! There is strong hysteresis: when the system is perform-
ing in-phase and the movement rate is decreased from
a high value, the anti-phase attractor may reappear but
the system does not switch to it.

In order to make use of dynamical systems theory for
a quantitative description of the transitions in coordinated
movements, one needs to establish a measure that allows
for a formulation of a dynamical system that captures
these experimental observations and can serve as a phe-
nomenological model. Essentially, the finger movements
represent oscillations (as will be discussed in more de-
tail in Subsect. “Oscillators for LimbMovements”) each of
which is described by an amplitude r and a phase '(t). For
the easiest case of harmonic oscillations the amplitude r
does not depend on time and the phase increases linearly
with time at a constant rate !, called the angular veloc-
ity, leading to '(t) D ! t. Two oscillators are said to be
in the in-phase mode if the two phases are the same, or
'1(t) " '2(t) D 0, and in anti-phase if the difference be-
tween their two phases is 180ı or ! radians. Therefore, the
quantity that is most commonly used to model the exper-
imental findings in movement coordination is the phase
difference or relative phase

"(t) D '1(t)"'2(t) D
(
"(t) D 0 for in-phase
"(t) D ! for anti-phase :

(1)

The minimal dynamical system for the relative phase
that is consistent with observations is known as the
Haken–Kelso–Bunz (or HKB) model and was first pub-
lished in a seminal paper in 1985 [19]

"̇ D "a sin" " 2b sin 2" with a; b # 0 : (2)

As is the case for all one-dimensional first order differen-
tial equations, (2) can be derived from a potential function

"̇ D " dV (")
d"

with V(") D "a cos ""b cos 2" : (3)
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Movement Coordination, Figure 1
Dynamics of the HKB model at the coordinative, relative phase (!) level as a function of the control parameter k D b

a . Top row:
Phase space plots !̇ as a function of !.Middle: Landscapes of the potential function V(!). Bottom: Bifurcation diagram, where solid
lines with filled circles correspond to stable fixed points (attractors) and dashed lines with open circles denote repellers. Note that k
increases from right (k D 0) to left (k D 0:75)

One of the two parameters a and b that appear in (2)
and (3) can be eliminated by introducing a new time scale
# D ˛t, a procedure known as scaling and commonly used
within the theory of nonlinear differential equations, lead-
ing to

"̇(t) D d"(t)
dt

!
d"
!
!
˛

"

d !˛
D "a sin"

# #
˛

$
" 2b sin 2"

# #
˛

$

˛
d"̃(#)
d#

D "a sin "̃(#) " 2b sin 2"̃(#)

(4)

where "̃ has the same shape as " , it is just changing on
a slower or faster time scale depending on whether ˛ is
bigger or smaller than 1. After dividing by ˛ and letting
the so far undetermined ˛ D a (4) becomes

d"̃
d#
D " a

˛„ƒ‚…
D1

sin "̃ " 2
b
˛„ƒ‚…
Dk

sin 2"̃ : (5)

Finally, by dropping the tilde ˜ (2) and (3) can be written
with only one parameter k D b

a in the form

"̇ D " sin" " 2k sin 2"

D " dV (")
d"

with V (") D " cos " " k cos 2" : (6)

The dynamical properties of the HKB model’s collec-
tive or coordinative level of description are visualized in
Fig. 1 with plots of the phase space ("̇ as a function of ")
in the top row, the potential landscapesV(") in the second
row and the bifurcation diagram at the bottom. The con-
trol parameter k, as shown, is the ratio between b and a,
k D b

a , which is inversely related to the movement rate:
a large value of k corresponds to a slow rate, whereas k
close to zero indicates that the movement rate is high.

In the phase space plots (Fig. 1 top row) for k D 0:75
and k D 0:5 there exist two stable fixed points at " D 0
and " D ! where the function crosses the horizontal axis
with a negative slope, marked by solid circles (the fixed
point at"! is the same as the point at ! as the function is
2!-periodic). These attractors are separated by repellers,
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zero crossings with a positive slope and marked by open
circles. For the movement rates corresponding to these
two values of k the model suggests that both anti-phase
and in-phase movements are stable. When the rate is in-
creased, corresponding to a decrease in the control param-
eter k down to the critical point at kc D 0:25 the former
stable fixed point at " D ! collides with the unstable fixed
point and becomes neutrally stable indicated by a half-
filled circle. Beyond kc, i. e. for faster rates and smaller val-
ues of k the anti-phase movement is unstable and the only
remaining stable coordination pattern is in-phase.

The potential functions, shown in the second row in
Fig. 1, contain the same information as the phase space
portraits as they are just a different representation of the
dynamics. However, the strong hysteresis is more intuitive
in the potential landscape than in phase space, and can
best be seen through an experiment that starts out with
slow movements in anti-phase (indicated by the gray ball
in the minimum of the potential at " D !) and increasing
rate. After passing the critical value kc D 0:25 the slight-
est perturbation will put the ball on the downhill slope
and initiate a switch to in-phase. If the movement is now
slowed down again, going from right to left in the plots,
even though the minimum at " D ! reappears, the ball
cannot jump up and occupy it but will stay in the deep
minimum at " D 0, a phenomenom known as hysteresis.

Finally, a bifurcation diagram is shown at the bottom
of Fig. 1, where the locations of stable fixed points for the
relative phase " are plotted as solid lines with solid circles
and unstable fixed points as dashed lines with open cir-
cles. Around kc D 0:25 the system undergoes a subcritical
pitchfork bifurcation. Note that the control parameter k in
this plot increases from right to left.

Evidently, the dynamical system represented by (2) is
capable of reproducing the basic experimental findings
listed above. From the viewpoint of theory, this is simply
one of the preliminaries for a model that have to be ful-
filled. In general, any model that only reproduces what is
built into it is not of much value. More important are cru-
cial experimental tests of the consequences and additional
phenomena that are predicted when the model is worked
through. Several such consequences and predictions will
be described in detail in the following sections. It is only
after such theoretical and experimental scrutiny that the
HKB model has come to qualify as an elementary law of
movement coordination.

Stability: Perturbations and Fluctuations

Random fluctuations, or noise for short, exist in all sys-
tems that dissipate energy. In fact, there exists a famous

theorem that goes back to Einstein, known as the dissipa-
tion-fluctuation theorem, which states that the amount of
random fluctuations in a system is proportional to its dis-
sipation of energy. There are effects from random noise on
the dynamics of relative phase that can be predicted from
theory both qualitatively and quantitatively, allowing for
the HKB model’s coordination level to be tested experi-
mentally. Later the individual component level will be dis-
cussed.

An essential difference between the dynamical systems
approach to movement coordination and the motor pro-
gram or internal model hypotheses is most distinct in re-
gions where the coordination pattern undergoes a sponta-
neous qualitative change as in the switch from anti-phase
to in-phase in Kelso’s experiment. From the latter point
of view, these switches simply happen, very much like in
the automatic transmission of a car: whenever certain cri-
teria are fulfilled, the transmission switches from one gear
to another. It is easy to imagine a similar mechanism to
be at work and in control of the transitions in movements:
as soon as a certain rate is exceeded, the anti-phase pro-
gram is somehow replaced by the in-phase module, which
is about all we can say regarding the mechanism of switch-
ing. On the other hand, by taking dynamic systems theory
seriously, one can predict and test phenomena accompa-
nying second-order phase transitions. Three of these phe-
nomena, namely, critical slowing down, enhancement of
fluctuations and critical fluctuations will be discussed here
in detail.

For a quantitative treatment it is advantageous to ex-
pand "̇ and V(") in (6) into Taylor series around the
fixed point " D ! and truncate them after the linear and
quadratic terms, respectively

"̇ D " sin " " 2k sin 2"
D "f"(" " !)C : : :g " 2kf2(" " !)C : : :g
$ (1 " 4k)(" " !)

V (") D " cos " " k cos 2"

D "f"1C (" " !)2 C : : :g
" kf1 " 4(" " !)2 C : : :g

$ 1 " k " (1 " 4k)(" " !)2 :

(7)

A typical situation that occurs when a system ap-
proaches and passes through a transition point is shown
in Fig. 2. In the top row the potential function for " # 0
is plotted (dashed line) together with its expansion around
the fixed point " D ! (solid). The bottom row consists of
plots of time series showing how the fixed point is or is
not approached when the system is initially at " D ! C$.
The phenomena accompanying second-order phase tran-
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Movement Coordination, Figure 2
Hallmarks of a system that approaches a transition point: enhancement of fluctuations, indicated by the increasing size of the shaded
area; critical slowing down shown by the time it takes for the system to recover from a perturbation (bottom); critical fluctuations
occur where the top of the shaded area is higher than the closest maximum in the potential, initiating a switch even though the
system is still stable

sitions in a system that contains random fluctuations can
be best described by Fig. 2.

Critical slowing down corresponds to the time it takes
the system to recover from a small perturbation $. In
the vicinity of the fixed point the dynamics can be de-
scribed by the linearization of the nonlinear equation
around the fixed point (7). Such a linear equation can
be readily solved leading to

"(t) D ! C%e(1!4k)t :

As long as k is larger than its critical value kc D 0:25
the exponent is negative and a perturbation will de-
cay exponentially in time. However, as the system
approaches the transition point, this decay will take
longer and longer as shown in the bottom row in Fig. 2.
At the critical parameter k D 0:25 the system will no
longer return to the former stable fixed point and be-
yond that value it will even move away from it. In
the latter parameter region the linear approximation
is no longer valid. Critical slowing down can be and
has been tested experimentally by perturbing a coor-
dination state and measuring the relaxation constant
as a function of movement rate prior to the transition.
The experimental findings [31,44,45] are in remark-
able agreement with the theoretical predictions of co-
ordination dynamics [43].

Enhancement of fluctuations is to some extent the
stochastic analog to critical slowing down. The ran-
dom fluctuations that exist in all dissipative systems
are a stochastic force that kicks the system away from
the minimum and (on average) up to a certain el-
evation in the potential landscape, indicated by the

shaded areas in Fig. 2. For large values of k the hori-
zontal extent of this area is small but becomes larger
and larger when the transition point is approached.
Assuming that the strength of the random force does
not change with the control parameter, the standard
deviation of the relative phase is a direct measure of
this enhancement of fluctuations and will be increas-
ing when the control parameter is moving towards its
critical value. Again experimental tests are in detailed
agreement with the stochastic version of the HKB
model [30,43,44].

Critical fluctuations can induce transitions even when
the critical value of the control parameter has not been
reached. As before, random forces will kick the sys-
tem around the potential minimum and up to (on av-
erage) a certain elevation. If this height is larger than
the hump it has to cross, as is the case illustrated in
Fig. 2 for k D 0:5, a transition will occur, even though
the fixed point is still classified as stable. In excellent
agreement with theory, such critical fluctuations were
observed in the original experiments by Kelso and col-
leagues [30] and have been found in a number of re-
lated experimental systems [31,42].

All these hallmarks point to the conclusion that transi-
tions in movement coordination are not simply a switch-
ing of gears but take place in a well defined way via the
instability of a former stable coordination state. Such phe-
nomena are also observed in systems in physics and other
disciplines where in situations far from thermal equilib-
rium macroscopic patterns emerge or change, a process
termed self-organization. A general theory of self-organiz-
ing systems, called synergetics [17,18], was formulated by
Hermann Haken in the early 1970s.
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The Oscillator Level

The foregoing description and analysis of bimanual move-
ment coordination takes place on the coordinative or col-
lective level of relative phase. Looking at an actual experi-
ment, there are two fingers moving back and forth and one
may ask whether it is possible to find a model on the level
of the oscillatory components from which the dynamics
of the relative phase can then be derived. The challenge
for such an endeavor is at least twofold: first, one needs
a dynamical system that accurately describes the move-
ments of the individual oscillatory components (the fin-
gers). Second, one must find a coupling function for these
components that leads to the correct relation for the rela-
tive phase (2).

Oscillators for Limb Movements

In terms of oscillators there is quite a variety to choose
from as most second order systems of the form

ẍ C & ẋ C !2x C N(x; ẋ) D 0 (8)

are potential candidates. Here ! is the angular frequency,
& the linear damping constant and N(x; ẋ) is a function
containing nonlinear terms in x and ẋ.

Best known andmost widely used are the harmonic os-
cillators, where N(x; ẋ)D0, in particular for the case with-
out damping &D0. In the search for a model to describe
human limb movements, however, harmonic oscillators
are not well suited, because they do not have stable limit
cycles. The phase space portrait of an harmonic oscillator
is a circle (or ellipse), but only if it is not perturbed. If such
a system is slightly kicked off the trajectory it is moving on,
it will not return to its original circle but continue to move
on a different orbit. In contrast, it is well known that if
a rhythmic human limb movement is perturbed, this per-
turbation decreases exponentially in time and the move-
ment returns to its original trajectory, a stable limit cycle,
which is an object that exists only for nonlinear oscilla-
tors [25,26].

Obviously, the amount of possible nonlinear terms to
choose from is infinite and at first sight, the task to find the
appropriate ones is like looking for a needle in a haystack.
However, there are powerful arguments that can be made
from both theoretical reasoning and experimental findings
that restrict the nonlinearities, as we shall see, to only two.
First, we assume that the function N(x; ẋ) takes the form
of a polynomial in x and ẋ and that this polynomial is of
the lowest possible order. So the first choice would be to
assume that N is quadratic in x and ẋ leading to an oscil-

lator of the form

ẍ C & ẋ C !2x C ax2 C bẋ2 C cxẋ D 0 : (9)

How do we decide whether (9) is a good model for rhyth-
mic finger movements? If a finger is moved back and forth,
that is, performs an alternation between flexion and exten-
sion, then this process is to a good approximation symmet-
ric: flexion is the mirror image of extension. In the equa-
tions a mirror operation is carried out by substituting x
by "x, and, in doing so, the equation of motion must not
change for symmetry to be preserved. Applied to (9) this
leads to

" ẍ C & ("ẋ)C !2("x)C a("x)2 C b("ẋ)2

C c("x)("ẋ) D 0

" ẍ " & ẋ " !2x C ax2 C bẋ2 C cxẋ D 0

ẍ C & ẋ C !2x " ax2 " bẋ2 " cxẋ D 0

(10)

where the last equation in (10) is obtained by multiplying
the second equation by " 1. It is evident that this equa-
tion is not the same as (9). In fact, it is only the same if
a D b D c D 0, which means that there must not be any
quadratic terms in the oscillator equation if one wants
to preserve the symmetry between flexion and extension
phases of movement. The argument goes even further:
N(x; ẋ) must not contain any terms of even order in x and
ẋ as all of them, like the quadratic ones, would break the
required symmetry. It is easy to convince oneself that as
far as the flexion-extension symmetry is concerned all odd
terms in x and ẋ are fine.

There are four possible cubic terms, namely ẋ3, ẋx2,
xẋ2 and x3 leading to a general oscillator equation of the
form

ẍC & ẋC!2xC ıẋ3C 'ẋx2C ax3C bxẋ2 D 0 : (11)

The effects that these nonlinear terms exert on the oscilla-
tor dynamics can be best seen by rewriting (11) as

ẍC ẋf& C 'x2 C ıẋ2„ ƒ‚ …
damping

gC xf!2 C ax2 C bẋ2„ ƒ‚ …
frequency

g D 0 (12)

which shows that the terms ẋ3 and ẋx2 are position and
velocity dependent changes to the damping constant & ,
whereas the nonlinearities x3 and xẋ2 mainly influence the
frequency. As the nonlinear terms were introduced to ob-
tain stable limit cycles and the main interest is in ampli-
tude and not frequency, we will let a D b D 0, which re-
duces the candidate oscillators to

ẍ C ẋf& C 'x2 C ıẋ2g C !2x D 0 : (13)
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Nonlinear oscillators with either ıD0 or 'D0 have been
studied for a long time and have been termed in the litera-
ture as van-der-Pol and Rayleigh oscillators, respectively.

Systems of the form (13) only show sustained oscilla-
tions on a stable limit cycle within certain ranges of the
parameters, as can be seen easily for the van-der-Pol oscil-
lator, given by (13) with ı D 0

ẍ C ẋf& C 'x2„ ƒ‚ …
"̃

g C !2x D 0 : (14)

The underbraced term in (14) represents the effective
damping constant, &̃ , now depending on the square of the
displacement, x2, a quantity which is non-negative. For the
parameters & and ' one can distinguish the following four
cases:
! > 0; " > 0 The effective damping &̃ is always positive.

The trajectories are evolving towards the origin, which
is a stable fixed point.

! < 0; " < 0 The effective damping &̃ is always negative.
The system is unstable and the trajectories are evolving
towards infinity.

! > 0; " < 0 For small values of the amplitude x2 the ef-
fective damping &̃ is positive leading to even smaller
amplitudes. For large values of x2 the effective damp-
ing &̃ is negative leading to a further increase in ampli-
tude. The system evolves either towards the fixed point
or towards infinity depending on the initial conditions.

! < 0; " > 0 For small values of the amplitude x2 the ef-
fective damping &̃ is negative leading to an increase in
amplitude. For large values of x2 the effective damping
&̃ is positive and decreases the amplitude. The system
evolves towards a stable limit cycle.
The main features for the van-der-Pol oscillator are

shown in Fig. 3 with the time series (left), the phase space
portrait (middle) and the power spectrum (right). The
time series is not a sine function but has a fast rising in-
creasing flank and a more shallow slope on the decreasing
side. Such time series are called relaxation oscillations. The
trajectory in phase space is closer to a rectangle than to
a circle and the power spectrum shows pronounced peaks
at the fundamental frequency ! and its odd higher har-
monics (3!; 5!; : : :).

In contrast to the van-der-Pol case the damping con-
stant &̃ for the Rayleigh oscillator, the case ' D 0 in (13),
depends on the square of the velocity ẋ2. Arguments
similar to those above lead to the conclusion that the
Rayleigh oscillator shows sustained oscillations for param-
eters & < 0 and ı > 0.

As shown in Fig. 4 the time series and trajectories of
the Rayleigh oscillator also exhibit relaxation behavior, but
in this case with a slow rise and fast drop. As for the

van-der-Pol, the phase space portrait is almost rectangu-
lar but the long and short axes are switched. Again the
power spectrum has peaks at the fundamental frequency
and contains odd higher harmonics.

Evidently, taken by themselves neither the van-der-Pol
nor Rayleigh oscillators are good models for human limb
movement for at least two reasons, even though they ful-
fill one requirement for a model: they have stable limit cy-
cles. First, human limb movements are almost sinusoidal
and their trajectories have a circular or elliptical shape.
Second, it has also been found in experiments with hu-
man subjects performing rhythmic limb movements that
when the movement rate is increased the amplitude of the
movement decreases linearly with frequency [25]. It can be
shown that for the van-der-Pol oscillator the amplitude is
independent of frequency and for the Rayleigh it decreases
proportional to !!2, both in disagreement with the exper-
imental findings.

It turns out that a combination of the van-der-Pol
and Rayleigh oscillator, termed the hybrid oscillator of the
form (13) fulfills all the above requirements if the parame-
ters are chosen as & < 0 and ' $ ı > 0.

As shown in Fig. 5 the time series for the hybrid oscilla-
tor is almost sinusoidal and the trajectory is elliptical. The
power spectrum has a single peak at the fundamental fre-
quency. Moreover, the relation between the amplitude and
frequency is a linear decrease in amplitude when the rate is
increased as shown schematically in Fig. 6. Taken together,
the hybrid oscillator is a good approximation for the tra-
jectories observed experimentally in human limb move-
ments.

The Coupling

As pointed out already, in a second step one has to find
a coupling function between two hybrid oscillators that
leads to the correct dynamics for the relative phase (2).
The most common realization of a coupling between
two oscillators is a spring between two pendulums, lead-
ing to a force proportional to the difference in locations
f12 D k[x1(t) " x2(t)]. It can easily be shown, that such
a coupling does not lead to the required dynamics on
the relative phase level. In fact, several coupling terms
have been suggested that do the trick, but none of them
is very intuitive. The arguably easiest form, which is one
of the possible couplings presented in the original HKB
model [19], is given by

f12 D (ẋ1 " ẋ2)
˚
˛ C ˇ(x1 " x2)2

%
: (15)

Combined with two of the hybrid oscillators, the dynami-
cal system that describes the transition from anti-phase to
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Movement Coordination, Figure 3
The van-der-Pol oscillator: time series (left), phase space trajectory (middle) and power spectrum (right)

Movement Coordination, Figure 4
The Rayleigh oscillator: time series (left), phase space trajectory (middle) and power spectrum (right)

Movement Coordination, Figure 5
The hybrid oscillator: time series (left), phase space trajectory (middle) and power spectrum (right)

Movement Coordination, Figure 6
Amplitude-frequency relation for the van-der-Pol (dotted),
Rayleigh (! !!2, dashed) and hybrid (! "!, solid) oscillator

in-phase in bimanual finger movements takes the form

ẍ1 C ẋ1
!
& C 'x21 C ıẋ21

"
C !2x1

D (ẋ1 " ẋ2)
˚
˛ C ˇ(x1 " x2)2

%

ẍ2 C ẋ2
!
& C 'x22 C ıẋ22

"
C !2x2

D (ẋ2 " ẋ1)
˚
˛ C ˇ(x2 " x1)2

%
:

(16)

A numerical simulation of (16) is shown in Fig. 7. In
the top row the amplitudes x1 and x2 are plotted as a func-
tion of time. The movement starts out in anti-phase at
! D 1:4 and the frequency is continuously increased to
a final value of ! D 1:8. At a critical rate !c the anti-
phase pattern becomes unstable and a transition to in-
phase takes place. At the bottom a continuous estimate of
the relative phase "(t) is shown calculated as
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Movement Coordination, Figure 7
Simulation of (16) where the frequency ! is continuously increased from ! D 1:4 on the left to ! D 1:8 on the right. Top: time
series of the amplitudes x1 and x2 undergoing a transition from anti-phase to in-phase when ! exceeds a critical value. Bottom:
Continuous estimate of the relative phase! changing from an initial value of" during anti-phase to 0when the in-phasemovement
is established. Parameters: # D "0:7, $ D ı D 1, ˛ D "0:2, ˇ D 0:2, and! D 1:4 to 1:8

"(t) D '1(t) " '2(t) D arctan
ẋ1
x1
" arctan

ẋ2
x2
: (17)

The relative phase changes from a value of ! during the
anti-phase movement to " D 0 when the in-phase pattern
has been established.

To derive the phase relation (2) from (16) is a little
lengthy but straightforward by using the ansatz (hypoth-
esis)

xk(t) D Ak(t)ei! t C A"k(t)e
!i! t (18)

then calculating the derivatives and inserting them
into (16). Next a slowly varying amplitude approximation
(Ȧ(t)% !) and rotating wave approximation (neglect all
frequencies > !) are applied. Finally, introducing the rel-
ative phase " D '1 " '2 after writing Ak(t) in the form

Ak(t) D rei'k (t) (19)

leads to a relation for the relative phase " of the form (2)
from which the parameters a and b can be readily found
in terms of the parameters that describe the oscillators and
their coupling in (16)

a D "˛ " 2ˇr2 ; b D 1
2
ˇr2

with r2 D "& C ˛(1 " cos")
' C 3ı!2 " 2ˇ(1 " cos ")2

: (20)

Breaking and Restoring Symmetries

Symmetry Breaking Through the Components

For simplicity, the original HKB model assumes on both
the oscillator and the relative phase level that the two coor-
dinating components are identical, like two index fingers.

As a consequence, the coupled system (16) has a symme-
try: it stays invariant if we replace x1 by x2 and x2 by x1. For
the coordination between two limbs that are not the same
like an arm and a leg, this symmetry no longer exists – it is
said to be broken. In terms of the model, the main differ-
ence between an arm and a leg is that they have different
eigenfrequencies, so the oscillator frequencies! in (16) are
no longer the same but become !1 and !2. This does not
necessarily mean that during the coordination the compo-
nents oscillate at different frequencies; they are still cou-
pled, and this coupling leads to a common frequency ˝ ,
at least as long as the eigenfrequency difference is not too
big. But still, a whole variety of new phenomena originates
from such a breaking of the symmetry between the com-
ponents [5,22,23,29,37].

As mentioned in Subsect. “The Coupling” the dynam-
ics for the relative phase can be derived from the level of
coupled oscillators (16) for the case of the same eigenfre-
quencies. Performing the same calculations for two oscil-
lators with frequencies !1 and !2 leads to an additional
term in (2), which turns out to be a constant, commonly
called ı!. With this extension the equation for the relative
phase reads

"̇ D ı! " a sin" " 2b sin 2"

with ı! D !2
1 " !2

2
˝

$ !1 " !2 : (21)

The exact form for the term ı! turns out to be the dif-
ference of the squares of the eigenfrequencies divided by
the rate˝ the oscillating frequency of the coupled system,
which simplifies to !1 " !2 if the frequency difference is
small. As before (21) can be scaled, which eliminates one
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Movement Coordination, Figure 8
Phase space plots for different values of the control parameters k and ı!. With increasing asymmetry (top to bottom) the functions
are shifted more and more upwards leading to an elimination of the fixed points near! D "" and ! D 0 via saddle node bifurca-
tions at k D 0:5 for small ı! and k D 0:25 for ı! large, respectively

of the parameters, and "̇ can be derived from a potential
function

"̇ D ı! " sin " " 2k sin 2"

D "dV (")
d"

with V(") D "ı! " " cos " " k cos 2" :

(22)

Plots of the phase space and the potential landscape for
different values of k and ı! are shown in Figs. 8 and 9, re-
spectively. From these figures it is obvious that the symme-
try breaking leads to a vertical shift of the curves in phase
space and a tilt in the potential functions, which has sev-
eral important consequences for the dynamics. First, for
a nonvanishing ı! the stable fixed points for the relative
phase are no longer located at " D 0 and " D ˙! but are
now shifted (see Fig. 8). The amount of this shift can be
calculated for small values of ı! and new locations for the
stable fixed points are given by

"(0) D ı!

1C 4k
and "(#) D ! " ı!

1 " 4k
: (23)

Second, for large enough values of ı! not only the fixed
point close to " D ! becomes unstable but also the in-
phase pattern loses stability undergoing a saddle node bi-
furcation as can be seen in the bottom row in Fig. 8. Be-
yond this point there are no stable fixed points left and the
relative phase will not settle down at a fixed value anymore

but exhibits phase wrapping. However, this wrapping does
not occur with a constant angular velocity, which can best
be seen in the plot on the bottom right in Fig. 9. As the
change in relative phase "̇ is the negative derivative of the
potential function, it is given by the slope. This slope is
large and almost constant for negative values of " , but for
small positive values, where the in-phase fixed point was
formerly located, the slope becomes less steep indicating
that " changes more slowly in this region before the dy-
namics picks up speed again when approaching ! . So even
as the fixed point has disappeared the dynamics still shows
reminiscence of its former existence.

The dynamics of relative phase for the case of differ-
ent eigenfrequencies from a simulation of (22) in shown
in Fig. 10. Starting out at a slow movement rate on the
left, the system settles into the fixed point close to " D ! .
When the movement rate is continuously increased, the
fixed point drifts upwards. At a first critical point a transi-
tion to in-phase takes place, followed by another drift, this
time for the fixed point representing the in-phase move-
ment. Finally, this state also looses stability and the relative
phase goes into wrapping. Reminiscence in the phase re-
gions of the former fixed point are still visible by a flatten-
ing of the slope around " $> 0. With a further increase of
the movement rate the function approaches a straight line.

The third consequence of this symmetry breaking is
best described using the potential function for small values
of ı! compared to the symmetric case ı! D 0. For the lat-
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Movement Coordination, Figure 9
Potential landscape for different values of the control parametersk andı!. With increasingasymmetry (top to bottom) the functions
get more and more tilted, destabilizing the system up to a point where there are no fixed points left on the bottom right. However,
remnants of the fixed point can still be seen as changes in the curvature of the potential

Movement Coordination, Figure 10
Relative phase ! as a function of time. Shown is a 4-" plot of a simulation of (22) for ı! D 1:7 where the control parameter k is
continuously decreased from k D 2 on the left to k D 0 on the right. The system settles close to anti-phase and the fixed point drifts
as k is decreased (corresponding to a faster period of oscillation). At a first critical value a transition to in-phase takes place followed
by another fixed point drift. Finally, the in-phase fixed point disappears and the phase starts wrapping

ter, when the system is initially in anti-phase " D ! and k
is decreased through its critical value a switch to in-phase
takes place as was shown in Fig. 1 (middle row). However,
the ball there does not necessarily have to roll to the left
towards " D 0 but with the same probability could roll to
the right ending up in the minimum that exists at " D 2!
and also represents an in-phase movement. Whereas the
eventual outcome is the same because due to the periodic-
ity " D 0 and " D 2! are identical, the two paths can very
well be distinguished. The curve in Fig. 7 (bottom), show-
ing the continuous estimate of the relative phase during
a transition, goes from " D ! down to " D 0, but could,
in fact with the same probability, go up towards " D 2! .

In contrast, if the eigenfrequencies are different, also the
points "! and ! , and 0 and 2! are no longer the same. If
the system is in anti-phase at " D ! and k is decreased, it
is evident from the middle row in Fig. 9 that a switch will
not take place towards the left to " $ 0, as the dynam-
ics would have to climb over a potential hill to do so. As
there are random forces acting on the dynamics a switch
to " $ 0 will still happen from time to time, but it is not
equally probable to a transition to " $ 2! , and it becomes
even more unlikely with increasing ı!.

These consequences, theoretically predicted to occur
when the symmetry between the oscillating components is
broken, can and have been tested, and have been found to
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be in agreement with the experimental results [21,29] (see
also [32,41]).

Asymmetry in the Mode of Coordination

Even though (16) is symmetric in the coordinating com-
ponents it can only describe a transition from anti-phase
to in-phase but not the other way around. Equation (16)
is highly asymmetric with respect to coordination mode.
This can be seen explicitly when we introduce variables
that directly reflect modes of coordination

 C D x1 C x2 and  ! D x1 " x2 : (24)

For an in-phase movement we have x1Dx2 and  !
vanishes, whereas for anti-phase x1D"x2 and therefore
 C D 0. We can now derive the dynamics in the variables
 C and  ! by expressing the original displacements as

x1 D
1
2
( C C  !) and x2 D

1
2
( C "  !) (25)

and inserting them into (16), which leads to

 ̈C C ' ̇C C !2 C C
&

12
d
dt
!
 3
C C 3 C 2

!
"

C ı

4
!
 ̇3
C C 3 ̇C ̇2

!
"
D 0

 ̈! C ' ̇! C !2 ! C
&

12
d
dt
!
 3
! C 3 ! 2

C
"

C ı

4
!
 ̇3
! C 3 ̇! ̇2

C
"
D 2 ̇!

!
˛ C ˇ 2

!
"
:

(26)

The asymmetry between in-phase and anti-phase is evi-
dent from (26), as the right-hand side of the first equation

Movement Coordination, Figure 11
Manipulandum used by Carson and colleagues [6]. a The original apparatus that allowed for variation in axis of rotation above,
below and in the middle of the hand. b The axis of rotation can be changed continuously, allowing us to introduce a parameter % as
a quantitativemeasure for the relative locations of the axes

vanishes and the equation is even independent of the cou-
pling parameters ˛ and ˇ. This is the reason that the origi-
nal HKB model only shows transitions from anti-phase to
in-phase and not vice versa.

Transitions to Anti-phase

In 2000 Carson and colleagues [6] published results from
an experiment in which subjects performed bimanual
pronation-supination movements paced by a metronome
of increasing rate (see also [2]). In this context an anti-
phase movement corresponds to the case where one arm
performs a pronation while the other arm is supinat-
ing. Correspondingly, pronation and supination with both
arms at the same time represents in-phase. In their exper-
iment Carson et al. used a manipulandum that allowed for
changing the axis of rotation individually for both arms as
shown in Fig. 11a.With increasing movement rate sponta-
neous transitions from anti-phase to in-phase, but not vice
versa, were found when the subjects performed prona-
tion-supination movements around the same axes for both
arms. In trials where one arm was rotating around the axis
above the hand and the other around the one below, anti-
phase was found to be stable and the in-phase movement
underwent a transition to anti-phase as shown for repre-
sentative trials in Fig. 12.

It is evident that the HKB model in neither its orig-
inal form (2) nor the mode formulation (26) is a valid
model for these findings. However, Fuchs and Jirsa [11]
showed that by starting from the mode description (26) it
is straightforward to extend HKB such that, depending on
an additional parameter ( , either the in-phase or the anti-
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Movement Coordination, Figure 12
Relative phase over time for two representative trials from the Carson et al. experiment. Left: the axis of rotation is below the hand
for both arms and a switch from anti-phase to in-phase occurs as themovement speeds up. Right: with one axis above and the other
below the hand, the in-phase movement becomes unstable at higher rates leading to a transition to anti-phase

Movement Coordination, Figure 13
Simulation of (28) for % D 0 (top) and % D 1 (bottom) where the frequency! is continuously increased from! D 1:4 on the left to
! D 1:8 on the right. Time series of the mode amplitudes C (black) and ! (gray) undergoing transitions from anti-phase to in-
phase (top) and from in-phase to anti-phase (bottom) when! exceeds a critical value. Parameters:# D "0:7, $ D ı D 1,˛ D "0:2,
ˇ D 0:2, and! D 1:4 to 1:8

phase mode is a stable movement pattern at high rates.
The additional parameter corresponds to the relative loca-
tions of the axes of rotation in the Carson et al. experiment
which can be defined in its easiest form as

( D jl1 " l2j
L

(27)

where l1, l2 and L are as shown in Fig. 11b. In fact, any
monotonic function f with f (0) D 0 and f (1) D 1 is com-
patible with theory and its actual shape has to be deter-
mined experimentally.

By looking at the mode Eqs. (26) it is clear that a sub-
stitution  C !  ! and  ! !  C to the left-hand side
of the first equation leads to the left-hand side of the sec-
ond equation and vice versa. For the terms on the right-

hand side representing the coupling this is obviously not
the case. Therefore, we now introduce a parameter ( and
additional terms into (26) such that for ( D 0 these equa-
tions remain unchanged, whereas for ( D 1 we obtain (26)
with allC and " subscripts reversed

 ̈C C ' ̇C C !2 C C
&

12
d
dt
!
 3
C C 3 C 2

!
"

C ı

4
!
 ̇3
C C 3 ̇C ̇2

!
"
D 2( ̇C

!
˛ C ˇ 2

C
"

 ̈! C ' ̇! C !2 ! C
&

12
d
dt
!
 3
! C 3 ! 2

C
"

C ı

4
!
 ̇3
! C 3 ̇! ̇2

C
"
D 2(1 " () ̇!

!
˛ C ˇ 2

!
"
:

(28)
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Movement Coordination, Figure 14
Simulation of (30)where the frequency! is continuously increased from! D 1:4 on the left to! D 1:8 on the right. Top: time series
of the amplitudes x1 and x2 undergoing a transition from in-phase to anti-phasewhen! exceeds a critical value. Bottom: Continuous
estimate of the relative phase ! changing from an initial value of 0 during the in-phase to " when the anti-phase movement is
established. Parameters: # D "0:7, $ D ı D 1,˛ D "0:2, ˇ D 0:2, % D 1 and! D 1:4 to 1:8

From (28) it is straight forward to go back to the rep-
resentation of the limb oscillators

ẍ1 C : : : D
1
2
!
 ̈C C  ̈!

"
C : : :

D  ̇!
!
˛ C ˇ 2

!
"
C (

˚
 ̇C

!
˛ C ˇ 2

C
"

"  ̇!
!
˛ C ˇ 2

!
"%

ẍ2 C : : : D
1
2
!
 ̈C "  ̈!

"
C : : :

D " ̇!
!
˛ C ˇ 2

!
"
C (

˚
 ̇C

!
˛ C ˇ 2

C
"

C  ̇!
!
˛ C ˇ 2

!
" %

(29)

where the left-hand side which represents the oscillators
has been written only symbolically as all we are dealing
with is the coupling on the right. Replacing the mode am-
plitudes  C and  ! in (29) using (24) one finds the gen-
eralized coupling as a function of x1 and x2

ẍ1 C : : : D (ẋ1 " ẋ2)
˚
˛ C ˇ(x1 " x2)2

%

C 2(
˚
˛ẋ2 C ˇ

&
ẋ2
!
x21 C x22

"
C 2ẋ1x1x2

'%

ẍ2 C : : : D (ẋ2 " ẋ1)
˚
˛ C ˇ(x2 " x1)2

%

C 2(
˚
˛ẋ1 C ˇ

&
ẋ1
!
x21 C x22

"
C 2ẋ2x1x2

'%
:

(30)

Like the original oscillator Eq. (16), Eq. (30) is invariant
under the exchange of x1 and x2 but in addition allows for
transitions from in-phase to anti-phase coordination if the
parameter ( is chosen appropriately (( D 1, for instance),
as shown in Fig. 14.

As the final step, an equation for the dynamics of rel-
ative phase can be obtained from (30) by performing the
same steps as before, which leads to a modified form of the

HKB equation (2)

"̇ D "(1 " 2()a sin" " 2b sin 2" (31)

and the corresponding potential function

"̇ D " dV(")
d"

with V(") D "(1 " 2()a cos " " b cos 2" : (32)

Both equations can be scaled again leading to

"̇ D "(1 " 2() sin " " 2k sin 2"

D "dV(")
d"

with

V(") D "(1 " 2() cos " " k cos 2" :

(33)

The landscapes of the potential for different values of
the control parameters k and ( are shown in Fig. 15. The
left column exhibits the original HKB case which is ob-
tained for ( D 0. The functions in the most right column,
representing the situation for ( D 1, are identical in shape
to the ( D 0 case, simply shifted horizontally by a value
of ! . These two extreme cases are almost trivial and were
the ones originally investigated in the Carson et al. exper-
iment with the axes of rotation either on the same side or
on opposite sides with respect to the hand. As the cor-
responding potential functions are shifted by ! with re-
spect to each other, one could assume that for an inter-
mediate value of ( between 0 and 1 the functions are also
shifted, just by a smaller amount. Such horizontal trans-
lations lead to fixed point drifts, as has been seen before
for oscillation components with different eigenfrequen-
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Movement Coordination, Figure 15
Potential landscape for different values of the control parameters k and %

cies. The theory, however, predicts that this is not the case.
In fact, for ( D 0:5 theory predicts that the two coordi-
nation modes in-phase and anti-phase are equally stable
for all movement rates. The deep minima for slow rates
indicate high stability for both movement patterns and as
the rate increases both minima become more and more
shallow, i. e. both movement patterns become less stable.
Eventually, for high rates at k D 0 the potential is entirely
flat, which means that there are no attractive states what-
soever. Pushed only by the stochastic forces in the system,
the relative phase will now undergo a random walk. Note
that this is very different from the phase wrapping en-
countered before where the phase was constantly increas-
ing due to the lack of an attractive state. Here the relative
phase will move back and forth in a purely random fash-
ion, known in the theory of stochastic systems as Brown-
ian motion. Again experimental evidence exists from the
Carson group that changing the distance between the axes
of rotation gradually leads to the phenomena predicted by
theory.

Conclusions

The theoretical framework outlined above represents the
core of the dynamical systems approach to movement co-
ordination. Rather than going through the large variety
of phenomena that coordination dynamics and the HKB

model have been applied to, emphasis has been put on
a detailed description of the close connection between the-
oretical models and experimental results. Modeling the co-
ordination of movement as dynamical systems on both
the mesoscopic level of the component oscillators and the
macroscopic level of relative phase allowed for quantita-
tive predictions and experimental tests with an accuracy
that is virtually unprecedented in the life sciences, a field
where most models are qualitative and descriptive.

Extensions of the HKBModel

Beyond the phenomena described above, the HKB model
has been extended in various ways. Some of these exten-
sions (by no mean exhaustive) are listed below with very
brief descriptions; the interested reader is referred to the
literature for details.

! The quantitative description of the influence of noise
on the dynamics given in Sect. “Stability: Perturbations
and Fluctuations” can be done in a quantitative fash-
ion by adding a stochastic term to (2) [40,43] or its
generalizations (21) and (31) [11] and treating them as
Langevin equations within the theory of stochastic sys-
tems (see e. g. [16] for stochastic systems). In this case
the system is no longer described by a single time se-
ries for the relative phase but by a probability distribu-
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tion function. How such distributions evolve in time is
then given by the corresponding Fokker–Planck equa-
tion and allows for a quantitative description of the
stochastic phenomena such as enhancement of fluctu-
ations and critical fluctuations. An important quantity
that can be derived in this context and is also related to
the critical fluctuations is the mean-first-passage time,
which is the time it takes (on average) to move over
a hump in the potential function.

! When subjects flex a single finger between the beats
of a metronome, i. e. syncopate with the stimulus, and
the metronome rate is increased, they switch sponta-
neously to a coordination pattern where they flex their
finger on the beat, i. e. synchronize with the stimulus.
This so-called syncopation-synchronization paradigm
introduced by Kelso and colleagues [32] has been fre-
quently used in brain-imaging experiments.

! A periodic patterning in the time series of the rel-
ative phase was found experimentally in the case of
broken symmetry by Schmidt et al. [41] and suc-
cessfully derived from the oscillator level of the HKB
model [12,14].

! The metronome pacing can be explicitly included
into (2) and its generalizations [24]. This so-called
parametric driving allows us to explain effects in the
movement trajectory known as anchoring, i. e. the
variability of the movement is smaller around the
metronome beat compared to other regions in phase
space [10]. With parametric driving the HKB model
also makes correct predictions for the stability of multi-
frequency coordination, where the metronome cycle
is half of the movement cycle, i. e. there is a beat at
the points of maximum flexion and maximum exten-
sion [1]. There are also effects from more complicated
polyrhythms that have been studied [38,39,47,48,49].

! The effect of symmetry breaking has been studied in-
tensively in experiments where subjects were swinging
pendulums with different eigenfrequencies [8,37,46].

! Transitions are also found in trajectory formation, for
instance when subjects move their index finger such
that they draw an “8” and this movement is sped up
the pattern switches to a “0” [3,4,9].

Future Directions

One of the most exciting applications of movement co-
ordination and its spontaneous transitions in particular
is that they open a new window for probing the hu-
man brain, made possible by the rapid development of
brain-imaging technologies that allow for the recording
of brain activity in a noninvasive way. Electroencephalog-

raphy (EEG), magnetoencephalography (MEG) and func-
tional magnetic resonance tomography (fMRI) have been
used in coordination experiments since the 1990s to study
the changes in brain activations accompanying (or trig-
gering?) the switches in movement behavior [13,33,34].
Results from MEG experiments reveal a strong frequency
dependence of the dominating pattern with the contri-
bution of the auditory system being strongest at low
metronome/movement rates, whereas at high rates the
signals from sensorimotor cortex dominate [15,35]. The
crossover point is found at rates around 2Hz, right where
the transitions typically take place.

In two other studies the rate dependence of the audi-
tory and sensorimotor system was investigated separately.
In anMEG experiment Carver et al. [7] found a resonance-
like enhancement of a brain response that occurs about
50ms after a tone is delivered, again at a rate of about 2Hz.
In the sensorimotor system a nonlinear effect of rate was
shown as well. Using a continuation paradigm, where sub-
jects moved an index finger paced by a metronome which
was turned off at a certain time while the subjects were
to continue moving at the same rate, Mayville et al. [36]
showed that a certain pattern of brain activation drops
out when the movement rate exceeds about 1.5Hz. Even
though their contribution to behavioral transitions is far
from being completely understood, it is clear that such
nonlinear effects of rate exist in both the auditory and the
sensorimotor system in parameter regions where behav-
ioral transitions are observed.

Using fMRI brain areas have been identified that show
a dependence of their activation level as a function of rate
only, independent of coordination mode, whereas activa-
tion in other areas strongly depends on whether subjects
are syncopating or synchronizing regardless of how fast
they are moving [20].

Taken together, these applications of coordination dy-
namics to brain research have hardly scratched the sur-
face so far but the results are already very exciting as
they demonstrate that the experimental paradigms from
movement coordination may be used to prepare the brain
into a certain state where its responses can be studied.
With further improvement of the imaging technologies
and analysis procedures many more results can be ex-
pected to contribute significantly to our understanding of
how the human brain works.
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Glossary

Granularity Granularity is the relative size, scale, level of
detail, or depth of penetration that characterizes an ob-
ject or system.

Multi-granular computing Humans are good at viewing
and solving a problem at different grain-sizes (abstrac-
tion levels) and translating from one abstraction level
to the others easily. This is one of basic characteris-
tics of human intelligence. The aim of multi-granular
computing is intended to investigate the granulation
problem in human cognition and endow computers
with the same capability to make them more efficient
in problem solving.

Quotient set Given a universe X and an equivalence rela-
tion R on X, define a set [X] D f[x]jx 2 Xg; [x] D
fyjy & x; y 2 Xg. [X] is called a quotient set with
respect to R, or simply a quotient set.

Quotient space Given a topologic space (X; T), T is
a topology on X and R is an equivalence relation
on X. Define a quotient structure on [X] as [T] D
fujp!1(u) 2 T; u ' [X]g, where p : X ! [X] is a nat-
ural projection from X to [X]. Construct a topologic
space ([X]; [T]). Space ([X]; [T]) is a quotient space
corresponding to R. There are authors who keep the
neighborhood system structured but remove the ax-
ioms of topology [13,14].

Quotient space model The quotient space model is
a mathematical model to represent a problem at dif-
ferent grain-sizes by using the concept of quotient
space in algebra. In the model a problem (or a sys-
tem) is described by a triple (X; T; f ), with universe
(domain) X, structure T and attribute f . If X repre-
sents the universe composed of the objects with the
finest grain-size, when we view the same universe X at
a coarser grain-size, we have a coarse-grained universe
denoted by [X]. Then we have a new problem space
([X]; [T]; [ f ]), where [X] is the quotient universe of X,
[T] the corresponding quotient structure and [f ] the
quotient attribute. The coarse space ([X]; [T]; [ f ]) is
called a quotient space of space (X; T; f ). Therefore,
a problem with different grain-sizes can be represented
by a family of quotient spaces.


