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Glossary

Coordination dynamics Coordination Dynamics, de-
fined broadly as the science of coordination, describes,
explains and predicts how patterns of coordination
form, adapt, persist and change in living things. In co-
ordination dynamics the parts communicate via mu-
tual information exchange and information is mean-
ingful and specific to the forms coordination takes.
Coordination dynamics embraces both spontaneous
self-organizing tendencies and the need to guide or
direct them in specific ways in a single conceptual
framework. Life, brain, mind and behavior are hy-
pothesized to be linked by virtue of sharing a common
underlying coordination dynamics.

Synergies Synergies (aka coordinative structures) are
functional groupings of structural elements (e. g. neu-
rons, muscles, joints) that are temporarily constrained
to act as a single coherent unit. They arise inmany con-
texts on many levels of biological organization, from
the genetic to the social. Synergies are the key to under-
standing biological coordination and as such are the
significant units of coordination dynamics. The syn-
ergy hypothesis is an hypothesis about how Nature
handles biological complexity.

Self-organization The ‘self’ in the word self-organization
refers to the ability of an open system that exchanges
matter, energy and information with the environment,
to organize itself. Spontaneous patterns arise solely as
a result of the dynamics of the system with no specific
ordering influence imposed from the outside and no
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homunculus-like agent inside. Nonequilibrium phase
transitions are the hallmark of self-organization in liv-
ing things.

Collective variables Collective variables (aka order pa-
rameters in physics or coordination variables in coordi-
nation dynamics) are relational quantities that are cre-
ated by the cooperation among the individual parts of
a system. Yet they, in turn, govern the behavior of the
individual parts. This is sometimes referred to as circu-
lar or reciprocal causality. In coordination dynamics,
the identification of coordination variables depends on
the level of description. What is “macro” at one level
may be “meso” or “micro” at another.

Control parameters Control parameters refer to natu-
rally occurring environmental conditions or intrinsic,
endogenous factors that move the system through its
repertoire of patterns and cause them to change. Ex-
perimentally, you only know for certain you have iden-
tified a control parameter if, when varied, it causes the
system’s behavior to change qualitatively or discontin-
uously, i. e., to change its functional state.

Metastability Metastability arises due to broken symme-
try in the coordination dynamics where the unstable
and stable fixed points (phase- and frequency-locked
states) have disappeared due to tangent or saddle-node
bifurcations leaving behind only remnants of the fixed
points. Metastability is the simultaneous realization of
two competing tendencies: the tendency of the compo-
nents to couple together and the tendency of the com-
ponents to express their intrinsic independent behav-
ior. Metastability has been hailed as a new principle of
organization in complex living systems, including the
brain, reconciling apparent contraries such as individ-
ual and collective, part and whole, competition and co-
operation, integration and segregation, and so forth.

Definition of the Subject

Even before man speculated about the nature and
sources of his own experiences, he was probably cu-
rious about the agencies by which animal motion
was affected. Life andmotion are almost synonymous
terms. Franklin Fearing [48]

In his preface to the Principia, Isaac Newton speculated
that not just the motions of the planets, the Moon and the
tides could be explained by the forces of attraction and
repulsion, but all other natural phenomena as well. De-
spite the hubris, “self-motion”, Newton recognized, “was
beyond our understanding” [64]. Three and a half cen-
turies later, the problem remains: the goal-directed co-
ordinated movements of animals are not mere mechan-

ical consequences of the laws of physics, at least as we
know them. Despite the many remarkable applications of
physics to biology and entire fields devoted to them (e. g.
biomechanics, biophysics, nanophysics, etc.) and despite
the successes of modern molecular biology, the great un-
resolved problem of biology remains: how complex liv-
ing things are coordinated in space and time. To recog-
nize that coordination is often purposeful and goal-di-
rected does not at all mean a return to vitalism. But it does
pose the scientific challenge of extending physics to un-
derstand coordination in living things. Coordination dy-
namics is a response to this challenge: it is a conceptual
framework and research program that deals fundamen-
tally with animate (and animated) self-organizing dynam-
ical systems (see also [181,182]). That is, it deals with an-
imate organisms anchored to and engaged in their sur-
rounding worlds. Table 1 compares some of the features of
classical mechanics and coordination dynamics. The Table
is not intended to be inclusive or to convey the idea that
there have been no candidate “paradigms” between clas-
sical mechanics and coordination dynamics. For present
purposes, “the complex systems” paradigm may represent
the most recent break from or extension of classical me-
chanics. In the complex systems paradigm, self-organiza-
tion would replace organization, open systems would re-
place closed systems, change, disorder and process would
replace stasis, order and equilibrium, etc. [163]. Coordina-
tion dynamics goes a step further. In coordination dynam-
ics it is not organization versus self-organization, order
versus disorder, closed versus open systems, reductionism
versus emergentism, etc., but rather both aspects that are
necessary for an exhaustive account of phenomena and
a deeper understanding of coordination in living things.
Hence, rather than view these features in opposition, they
are better viewed as complementary [100,104,110].

Coordination represents one of themost striking, most
taken for granted, yet least understood features of all living
things. Imagine a living system whose component parts
and processes, on any level of description one choose to
examine, did not interact with each other or with their
surrounds. Such a collective “cell,” “organ,” “organism”
or “society” would possess neither structure nor function.
Coordination can be seen almost everywhere we look,
whether in the regulatory interactions among genes that
affect how an organism develops and how some diseases
like cancer occur, the tumbling and twisting of the bac-
terial flagellum, the coordinated responses of organisms
to constantly varying environmental stimuli, the coordi-
nation among nerve cells that produce basic forms of lo-
comotion in vertebrates and invertebrates, the coordina-
tion among cell assemblies of the brain that underlies our
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Coordination Dynamics, Table 1
Some complementary features of classical mechanics and coordination dynamics

Classical Mechanics Coordination Dynamics
machines; organized “organisms ”; self-organized
inanimate animate
motion coordination (function); animation
matter materially instantiated; organization
forces information (semantic) and information exchange; couplings
fundamental dimensions (M, L, T) collective or coordination variables
space, time spatiotemporal
linear; smooth dynamics essentially nonlinear; bifurcations; multi- and metastable
deterministic fluctuations/variability play key role
decomposable; “emergent ”; synergistic;
motion of whole = sum of motion of the parts motion of whole > sum of motion of the parts
homogeneous parts, elements, components heterogeneous units and connectivity
micro versus macro level distinction level independent strategy; ‘one level down ’
fixed laws extensible laws; regularities
context-free context-dependent
machine/artifactual perspective on order organic/natural perspective on order

awareness, ability to think, remember, decide and act, the
miraculous coordination between the lungs, larynx, lips
and tongue that belies a child’s first word, the learned co-
ordination among fingers and brain that allows the skilled
pianist to play a concerto, the congruence of motion and
emotion in dance, drama and everyday life, the coordina-
tion between people – like rowers in a racing eight – work-
ing together to achieve a common goal. Everything is co-
ordinated.

What do we mean by the word coordination? Coor-
dination is not only spatial and temporal order. Rather,
it refers to different kinds and degrees of functional or-
der among interacting parts and processes in space and
time. Newtonian mechanics may define limits on how bi-
ological systems are coordinated, but it says nothing about
their functional organization, per se. How are complex liv-
ing things coordinated in space and time? What is the na-
ture of the basic interactions that give rise to patterns of co-
ordinated behavior? Why do they take the form they do?
These questions lie at the heart of understanding coordi-
nation. Given the ubiquity of coordinated behavior in liv-
ing things, one might have expected its lawful basis to have
been uncovered many years ago. However, it is only in the
last 25 years or so, and under quite peculiar circumstances,
that basic laws for a quantitative description of coordina-
tion have been found.

Introduction

A centipede was happy quite,
Until a frog in fun said:

“Pray tell which leg comes after which?”
This raised her mind to such a pitch,
She lay distracted in the ditch,
Considering how to run. Anon

Coordination Dynamics – the science of coordination –
refers to the concepts, methods and tools used to describe,
explain and predict how patterns of coordination form,
adapt, persist, and change in living things. It is about
identifying coordinated patterns in the behavior of liv-
ing things and expressing how these patterns evolve and
change in terms of dynamical laws or rules. The dynam-
ics here refers to equations of motion for key coordination
variables or order parameters [73] that characterize coor-
dinated patterns of behavior on multiple levels of descrip-
tion. As the name implies, the dynamics deals with coordi-
nation, not (or not only) with matter in motion: coordina-
tion dynamics (see Table 1). Through an intimate relation-
ship between theory, experiment, analysis and modeling,
Coordination Dynamics seeks to identify the laws, prin-
ciples and mechanisms underlying coordinated behavior
within and between different levels of organization, ex-
plicitly addressing the connection between levels. Thus,
a goal of Coordination Dynamics is to identify the na-
ture of the functional and context-dependent coordina-
tion within a part of a system (e. g., the firing of cells in
the heart or neurons in a part of the brain), between dif-
ferent parts of a system (e. g., parts of the brain, parts
of the body, members of an audience) and between dif-
ferent kinds of system (e. g., stimuli and responses, or-
ganisms and environments, humans and robots, etc.). In
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coordination dynamics, the coupling between things is
realized by many mechanisms, but is fundamentally in-
formational in nature. That is, Coordination dynamics
deals specifically with meaningfully coupled, self-organiz-
ing systems: the parts communicate via mutual informa-
tion exchange and information is meaningful and specific
to the forms coordination takes. As a source of biologi-
cal order and pattern, self-organization has received much
less attention than the teleonomic, directed nature of liv-
ing things captured by terms like “program”, “blueprint”,
“template” and so forth. Instead of treating them as op-
posing theories, Coordination Dynamics unites the spon-
taneous, self-organizing nature of coordination and the
obviously directed, agent-like properties characteristic of
animate nature into a single framework [100,104,110]. It
does this by studying how functionally meaningful in-
formation arises from spontaneous self-organizing pro-
cesses and how it in turn modifies, guides and directs
them.

Coordination Dynamics is both multi- and interdis-
ciplinary, engaging relevant aspects and subfields of psy-
chology, philosophy, biology, neuroscience, computer sci-
ence, engineering, mathematics and physics. For Coordi-
nation Dynamics, a complete understanding of coordina-
tion phenomena on any given level of description requires:
i) specifying the individual coordinating elements and
their properties; ii) identifying key parameters, bound-
ary and task conditions that constrain coordination; and
(iii) showing how interactions among coordinating ele-
ments produce or generate patterns of coordination. By
demonstrating in specific cases how the nonlinear cou-
pling among the parts produces coordinated behavior Co-
ordination Dynamics demystifies the popular term “emer-
gence”. Even more subtly, a certain régime of Coordina-
tion Dynamics calledmetastability resolves the longstand-
ing dichotomy between the whole and the parts by ex-
plicitly showing how the individual parts of the system
may retain a certain degree of autonomy while still co-
ordinating as a whole. To the extent that they transcend
the particular mechanisms through which coordination
is realized, the principles of Coordination Dynamics may
be said to be “universal” and hence have the potential
to describe and explain coordinated behavior in a num-
ber of fields ([75]; see also ! Movement Coordination
and ! Social Coordination, from the Perspective of Co-
ordination Dynamics). In the case of movement coordi-
nation, for example, Coordination Dynamics provides the
basic laws for a quantitative description of phenomena
that are observed when humans interact in a certain way
with themselves, with other humans and with their envi-
ronment [59,100].

History of CoordinationDynamics:
Synergy and Rhythmic Order

Coordination Dynamics arose as a response to the fun-
damental problem of control and coordination in com-
plex, biological systems: the problem of degrees of free-
dom. Consider an ordinarymovement of the human body.
The body itself consists of over 790 muscles and 100 joints
that have co-evolved in a complex environment with a ner-
vous system that contains ! 1012 neurons and neuronal
connections. On the sensory side, billions of receptor el-
ements embedded in skin, joints and muscles inform the
mover about his movement. Clearly, any ordinary hu-
man activity requires the cooperation among very many
structurally diverse elements – a miracle that we take for
granted (e. g. [164]). How does nature compress the very
high dimensional state space of such a complex system
into something lower dimensional and controllable? An
attractive hypothesis proposed by the Russian physiologist
Bernstein (1896–1966 [17]) is that in complex living sys-
tems, the individual elements are not controlled directly
but are rather organized into collectives called synergies.
Synergies are functional groupings of structural elements
(e. g. neurons, muscles, joints) that are temporarily con-
strained to act as a single coherent unit. Just as new states
of matter form under certain conditions when a group of
atoms behaves as a single particle (e. g., the Bose–Einstein
condensate) so a new state of biological function emerges
when large ensembles of different elements form a syn-
ergy. The synergy hypothesis is therefore an hypothesis
about how Nature handles biological complexity. Syner-
gies may appear in many contexts on many levels of bi-
ological organization, from the genetic to the social. De-
pending on context, synergies can accomplish different
functions using some of the same anatomical components
(e. g., those used for speaking and chewing) and the same
function using different components (e. g. writing one’s
name with a pen attached to the big toe). Once assembled,
the degrees of freedom composing a synergy take care of
themselves in a relatively autonomous organization. The
assembling and disassembling of synergies may be said to
be “soft” demanding little energy: synergies are ready to
become something else at an instant. They are the “atoms”,
the significant units of biological function [105,107].

The hallmark of a synergy is that the individual ele-
ments adjust to mutual fluctuations and to fluctuations in
the external force field (and more generally, the synergy’s
environment) in order to sustain integrity of function. As
a consequence, natural variations (which from the scien-
tist’s view may be seen as “errors”) that occur in the indi-
vidual elements of the synergy are compensated by adjust-
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ments (“covariations”) in other members of the synergy in
such a way as to maintain a given function stable. Retain-
ing stability is, for a synergy, the retaining of functional
integrity [105,204]. Stability, therefore, plays a key role in
coordination dynamics, where the great challenge is to dis-
cover what the stability is of. Since the key variables of co-
ordination are not known a priori in living things, they
must be identified through empirical research. This, as we
shall see, follows a particular strategy.

In the late 1970s and early 80s technological devel-
opments and sophisticated computer methods for ana-
lyzing complex, multidegree of freedom movements en-
abled stringent experimental tests of the synergy hy-
pothesis to be carried out [112,120]. Invariably, the
experiments, which ranged from postural control to
speech production and complex finger and limb move-
ments ([105,107,136,201,204] for reviews), showed: a) that
a perturbation to any part of the putative synergy is rapidly
compensated for by remotely linked elements in such
a way as to preserve system function; b) that the same ele-
ments are used in different functions in different ways; c)
that different elementsmay accomplish the same function;
and d) that the adjustments observed could in all cases
be said to be meaningful, task- and context-specific. All
this evidence for the existence of synergies attests to the
tremendous redundancy or degeneracy of biological sys-
tems [46].

All scientific journeys begin with a single step.
The identification of synergies as significant structural–
functional units of biological coordination was an impor-
tant one for the development of Coordination Dynam-
ics. Synergies simplify control by reducing the number
of variables that must be independently specified: as con-
straints, they make control and coordination of complex,
multivariable systems possible. But understanding goes far
beyond identification. How are synergies formed? What
principles govern their assembly? And how does one syn-
ergy change spontaneously to another as internal or exter-
nal conditions change? How can distinct synergies co-exist
among the same set of components? And how are individ-
ual components of the synergy engaged and disengaged as
circumstances change?

Insights into these questions come from the work of
a largely unheralded genius called Erich von Holst [215],
a behavioral physiologist who spent his life studying co-
ordination in a wide variety of creatures – from worms
to man. Von Holst’s research will not give us answers to
all the questions about synergies but it will provide key
insights into the essence of coordination and a stepping
stone to finding the underlying principles. Using an exper-
imental model system that allowed him to measure an ele-

mentary synergy – the to and fro motions of the fins of the
swimming dogfish Labrus under carefully controlled wa-
ter flow conditions – von Holst identified at least three ba-
sic types of coordination: absolute coordination, in which
component parts are locked together in time (like the syn-
chronized flashing of fireflies, a couple making love or
phase synchrony between parts of the brain); partial or
relative coordination, in which the component parts ‘lock
in’ only transiently and then break apart as circumstances
change (like a little boy walking hand in hand with his fa-
ther on the beach; dad must slow down and/or son add
a step so that they can stay together); and no coordination
at all, in which the component parts behave quite inde-
pendently (as occurs in the locomotion of millipedes and
centipedes when the same little boy chops off their mid-
dle legs, or perhaps after persistent, long term practice in
playing the piano or the violin). Various blends, mixes and
transitions between these coordinated behaviors were also
observed – always matching the exigencies of the internal
and external environment.

Why might some kind of common principle exist for
such diverse phenomena? The reason is that the same basic
coordination phenomena seem to cut across a wide range
of levels, creatures and functions. Among those observed
are: patterns of coordination remain stable in time despite
continuous, and often unexpected perturbations; the ease
with which component parts and processes are flexibly en-
gaged and disengaged as functional demands or environ-
mental conditions change; the existence of multiple coor-
dination patterns – so-called multifunctionality – that ef-
fectively satisfy the same set of circumstances; the selection
of particular coordination patterns that are exquisitely tai-
lored to suit the current needs of the organism; adaptation
of coordination to changing internal and external contin-
gencies; smooth and abrupt transitions from one coordi-
nated pattern to another; transitions from partially to fully
coordinated patterns and vice-versa; persistence of a coor-
dinated pattern evenwhen conditions that led to the estab-
lishment of the pattern have changed (a kind of memory),
and so forth. Such phenomena appear so commonly and
so consistently as to suggest the existence of an underly-
ing lawfulness or regularity that transcends the differences
between systems. Nature, as the saying goes, operates with
ancient themes. Or maybe nature just is what it is.

Conceptual Foundations of CoordinationDynamics:
Self-organizingDynamical Systems

Given we accept the empirical facts about synergies and
rhythmic order in the nervous system and the movements
of living things, what concepts, methods and tools do we
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use to understand them? Were synergies simply rigid me-
chanical entities built by an engineer or an intelligent de-
signer, control theory with its programs, reference levels,
comparators, feedforward and feedback error correcting
mechanisms and so forth, might have seemed an obvious
place to look for explanatory tools. A program instructs
the parts of a system what to do and when to do it. Feed-
back may then be used to correct errors in the outcome.
But now what? The system receives an error signal: How
does it know which of its many parts to correct? In a com-
plex system composed of very many components it may
take a very long time to come up with a solution, a prob-
lem computer scientists refer to as an NP-complete prob-
lem, where NPmeans “non-deterministic polynomial time
complete”. Biology with its degeneracy and redundancy
has no such problem. “Error” signals from one part of
a synergy are rapidly compensated by other members. So
if anything, the machine perspective on order and regula-
tion (Table 1) seems to compound the problem rather than
solve it.

Coordination Dynamics takes its inspiration from
a natural, organic perspective, i. e., how nature handles
complexity (Table 1). It is well-known that pattern for-
mation in open, nonequilibrium physical and chemical
systems such as fluids, lasers and chemical reactions can
emerge spontaneously. These patterns arise solely as a re-
sult of the dynamics of the system with no specific order-
ing influence imposed from the outside environment and
no homunculus-like agent inside. Such “self-organized”
pattern formation is a cooperative phenomenon that re-
sults from the interaction of large numbers of interacting
subsystems [73,152]. It should be stressed here that there
is no “self” inside the system responsible for prescribing or
coding the emergent pattern. The ‘self’ in self-organization
comes from the fact that given the ability to exchange mat-
ter, energy and information with the environment, the sys-
tem organizes itself. That the organism is an open system
is one of two essential criteria for life postulated by Fran-
cis Crick in Of Molecules and Men [33], yet it has received
much less attention in biology than Crick’s other criterion,
the need for organisms to reproduce and pass on ‘copies’
of themselves to their descendants. Here already we see
a dichotomy between a complex system’s natural order-
ing tendencies and the need (at least in living systems) to
guide that order in specific ways. Coordination dynamics
(Table 1) reconciles this dichotomy by viewing these two
fundamental aspects as complementary ([100,104,110]).

In his general theory of nonequilibrium phase transi-
tions called “synergetics” Haken [73] showed that close to
critical points where a so-called control parameter crosses
a threshold, very complex, high-dimensional systems can

be completely described by a much lower dimensional dy-
namics specified in terms of only a few collective variables
or order parameters. What do these terms mean? Con-
trol Parameters refer to naturally occurring environmen-
tal conditions or intrinsic, endogenous factors that on first
blush appear analogous to what an experimental scientist
might call an independent variable. But the concept is en-
tirely different, and the implications for experimental de-
sign far reaching [96]. The role of control parameters is
to move the system through its repertoire of patterns and
cause them to change. In fact, you only know for certain
you have identified a control parameter if, when varied,
it causes the system’s behavior to change qualitatively or
discontinuously, i. e., to change state. In a dynamical sys-
tem, when a parameter changes smoothly, the attractor in
general also changes smoothly. Sizeable changes in the in-
put have little or no effect on the resulting output. How-
ever, when the control parameter passes through a criti-
cal point or threshold in an intrinsically nonlinear dynam-
ical system an abrupt change in the attractor can occur.
This sensitive dependence on parameters is called a bifur-
cation in mathematics, or a nonequilibrium phase transi-
tion in physical theories of pattern formation [73]. Indeed,
control parameters are often referred to in mathematics as
bifurcation parameters. Qualitative change does not mean
that quantification is impossible. To the contrary, qual-
itative change is at the heart of pattern formation and,
provided care is taken to evaluate system timescales (e. g.,
how quickly the control parameter is changed relative to
the typical time of the system to react to perturbations;
see [121]) quantitative predictions ensue that can be tested
experimentally (see Sect. “The TheoreticalModeling Strat-
egy of Coordination Dynamics: Symmetry and Bifurca-
tions”).

Collective variables are relational quantities that are
created by the cooperation among the individual parts of
a system. Yet they, in turn, govern the behavior of the in-
dividual parts. This is sometimes referred to as circular or
reciprocal causality. In self-organizing systems the stran-
glehold of linear causality is broken. At best, simple cause-
effect relations are the exception, not the rule. Depending
on where the system lives in the space of its parameters,
many causes can produce the same effect or the same cause
can have multiple effects. One can intuit why the concept
of collective or coordination variable is central to a science
of coordination. The reason is that interactions in such
systems are so complicated that understanding may only
be possible in terms of system-specific collective or coor-
dination variables. The latter are not necessarily “macro-
scopic quantities”. In coordination dynamics, the identi-
fication of coordination variables depends on the level of
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description. What is “macro” at one level may be “meso”
or “micro” at another. This strategy of folding together all
aspects within the dynamics of collective or coordination
variables embraces the full complexity of living things on
a given level of description without proliferating arbitrary
divisions (for a nice discussion see [203]).

In nonequilibrium systems, the enormous compres-
sion of degrees of freedom near critical points arises be-
cause events occur on different timescales: the faster in-
dividual elements in the system become “enslaved” to the
slower, “emergent” collective variables [73]. Alternatively,
one may conceive of a hierarchy of timescales for vari-
ous processes involved in coordination. On a given level
of the hierarchy are coordination variables subject to con-
straints (e. g., of the task) that act as boundary conditions
on the coordination dynamics. At the next level down are
component processes and events that typically operate on
faster timescales. Notice for the ‘tripartite scheme’ of Co-
ordination Dynamics (see pp. 66–67 in [100]) the key is
to choose a level of description and understand the rela-
tion between adjacent levels, not reduce to some “funda-
mental” lower level (Table 1). In coordination dynamics,
no level is any more or less fundamental than any other.
A complete description of a phenomenon always requires
three adjacent tiers: The boundary conditions and control
parameters that establish the context for particular coor-
dination phenomena to occur; the collective level and its
dynamics; the component level and its dynamics includ-
ing the nonlinear coupling between components.

Dynamic instability is the generic mechanism under-
lying self-organized pattern formation and change in all
(open) systems coupled to their internal or external envi-
ronments [153]. Near instability the individual elements,
in order to accommodate to current conditions, must or-
der themselves in new or different ways. The patterns that
emerge at nonequilibrium phase transitions may be de-
fined as attractive states of the collective variable dynam-
ics. That is, the collective variable may converge in time
to a certain limit set or attractor solution, a nonequilib-
rium steady state. Attractors can be fixed points, in which
all initial conditions converge to some stable rest state. At-
tractors can also be periodic, exhibiting preferred rhythms
or orbits on which the system settles regardless of where it
starts. Or, there can be so-called strange attractors; strange
because they exhibit deterministic chaos, a type of irregu-
lar behavior resembling random noise, yet often contain-
ing pockets of quite ordered behavior. Stable fixed point,
limit cycle and chaotic solutions as well as a wide variety
of other transient and irregular behaviors are possible in
the same system, depending on the values of control pa-
rameters (and their time dependence). Moreover, fluctua-

tions are always present, constantly testingwhether a given
pattern is stable. Fluctuations are not just noise; rather, by
probing the stability of existing states they allow the system
to discover new, more adaptive patterns that suit the pre-
vailing circumstances (boundary conditions, control pa-
rameters; Table 1).

How might these conceptual tools aid our understand-
ing of biological coordination? On first blush, it might
seem a gigantic leap from the physics and mathematics of
pattern formation in nonequilibrium systems to the prob-
lem of coordination in living things. Yet in science, anal-
ogy often plays a major role in bringing about conceptual
breakthroughs. Although initially the analogy may seem
far-fetched, great science often starts with a vague idea
which, when followed by crucial experiments and math-
ematical theory renders the vague idea exact. A key as-
pect to appreciate is that cooperative phenomena in phys-
ical systems are typically independent of the particular
molecular machinery or material substrate that instanti-
ates them. This is because the elementary components are
the same, i. e. homogeneous. On the other hand, in living,
evolved things the component elements are often quite dif-
ferent. Thus any theory of coordination of living things
will have to take into account the heterogeneity of its com-
ponent elements. Perhaps as a consequence of inherent
heterogeneity (and no doubt the advancement of technol-
ogy) the tendency in biology is to focus more and more
on specific processes at ever smaller and smaller scales. As
a result, building huge data bases may sometimes appear
to take precedence over finding scientific laws [55].

Finding Dynamical Laws of Coordination

What if biological coordination were shown to be a self-
organized phenomenon? Might that be a springboard
to finding laws of coordination? In the sense of T.S.
Kuhn [131] such questions appear to call out for a new
paradigm, special entry points where irrelevant details
may be pruned away exposing the essential aspects one is
trying to understand. Inspired by synergetics (and para-
doxical though it may seem) the key to determining if co-
ordination as a self-organized phenomenon is to focus on
qualitative change, places where abrupt switches or bifur-
cations in coordination occur. Qualitative change is cru-
cial because it affords a clear distinction between one co-
ordination pattern and another, thereby enabling one to
identify the key collective variables or order parameters that
define coordination states and their coordination dynam-
ics. If a complex system is changing smoothly and lin-
early it is hard to distinguish the variables that matter, so-
called state variables, from the ones that don’t. Qualita-
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tive change may also be used to infer relevant quantities in
more naturalistic settings. In situations where many vari-
ables may be changing in uncontrolled ways, the one(s)
that change(s) abruptly are likely to be the most meaning-
ful, both for the phenomena themselves and our under-
standing of them [96]. Likewise, any parameter that in-
duces qualitative behavioral change qualifies as a control
parameter. This is the reason why stability is so impor-
tant. As a control parameter crosses a critical value the
previously stable pattern becomes unstable and the system
switches to a different pattern that is now stable beyond the
critical point. The quite general predictions of nonequi-
librium phase transition theory are a strong enhancement
of fluctuations (critical fluctuations) and a strong increase
in the pattern’s relaxation time (critical slowing down) as
the transition is approached. Obviously, if nonequilibrium
phase transitions are a basic mechanism of self-organiza-
tion and if, as hypothesized, the forces of evolution and
self-organization form the core of biological order and co-
ordination, it should be possible to discover nonequilib-
rium phase transitions and their signature features in real
experiments. If not, the theory that coordination in living
things is due fundamentally to self-organization must go
the way of all beautiful theories that are negated by the
facts.

Empirical Foundations of CoordinationDynamics:
Pattern Generation, Stability and Phase Transitions

In coordination dynamics, the payoff of knowing collec-
tive variables and control parameters is high: they enable
one to obtain the dynamical rules of behavior on a chosen
level of description. By adopting the same strategy “one
level down”, the individual components and their dynam-
ics may be studied and identified. It is the nonlinear inter-
action between the parts that creates coordinative patterns
of the whole thereby building a bridge across levels of de-
scription (Table 1). This ability to derive phenomena from
lower levels of description is at the core of what scientists
usually mean by the word “understanding”. In general, in
complex living systems it is difficult to isolate the compo-
nents and study their dynamics. The reason is that the in-
dividual components seldom exist outside the context of
the functioning whole, and have to be studied as such.

If phase transitions hold the key to finding laws of
coordination, where should we look for them? A cen-
tral criterion for a law-based approach to coordination
is reproducibility of the phenomenon in question. Al-
though not everything is rhythmic, rhythms represent
a wide variety of coordinated behaviors in a very large
number of different biological systems at very many lev-

els [24,70,71,97,119,174,212,215] and seem like an obvi-
ous entry point. One only has to look at the extensive
field of so-called “central pattern generators” (CPGs) in in-
vertebrate and vertebrate neurobiology to find remarkable
similarities in the patterns that living creatures produce.
Terms such as “swimming” CPG, “flight” CPG, and “lo-
comotor” CPG reflect the reproducibility of patterns and
their functional significance. Synchronization and desyn-
chronization, frequency- and phase-locking are ubiqui-
tous features of such patterns reflecting a high degree of
neural and behavioral coordination (see Sects. “History
of Coordination Dynamics: Synergy and Rhythmic Or-
der” and “Coordination of Multiple Components: From
Quadrupeds to Brains”).

What then of phase transitions? And what connection
exists, if any, between rhythms and phase transitions? It is
well-known that quadrupeds and indeed many creatures
including birds and fish exhibit characteristic gaits and
may switch flexibly between them depending on circum-
stances. In the neurobiology literature, a key question is
always “where are the switches in this thing”? [1]. Rather
than assume the existence of switches, a priori, the sci-
entific approach of coordination dynamics is to investi-
gate the necessary and sufficient conditions that give rise
to switching. Inspired by theories of self-organization in
nature, coordination dynamics asks if switching may take
the form of a nonequilibrium phase transition. The idea is
not so far fetched as it seems. Many years ago, order-order
transitions were hypothesized by Erwin Schrödinger [178]
to be a crucial principle of biological organization and hy-
pothesized to be the “new laws in the organism” [109].

Three Deceptively Simple Experiments

To investigate order-order transitions experimentally,
consider an experimental paradigm introduced some years
ago in which human beings are asked to move their two
index fingers back and forth rhythmically [94,95]. In one
condition (call it parallel, Fig. 1) they are told to alter-
nate finger movements at a comfortable rate, one finger
flexing in time as the other extends. In another separate
condition (call it mirror) they are told to flex both fin-
gers together and extend both fingers together at the same
time. The key part of the experiment is that participants
are instructed to increase the speed at which they perform
these movements. For better experimental control a pac-
ing metronome whose frequency can be systematically in-
creased (say every 10 cycles called a plateau) may be used
for subjects to follow. The main results are shown in Fig. 1
and described in the figure’s caption.
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Coordination Dynamics, Figure 1
Phase transitions in bimanual movements. Left side. On the top are the two experimental conditions (parallel, antiphase and mir-
ror, in phase) in the Kelso paradigm. The lower plot shows the time series of the finger movements in a representative run. As rate
increases, trials initiated in the antiphase pattern spontaneously switch to the in-phasemirror pattern. The critical frequency is iden-
tified with an arrow. In contrast, trials initiated in the in-phase pattern do not switch as frequency increases (not shown). Right side.
Distributions of relative phase between finger movements for plateaus of increasing frequency of movement. Initially the relative
phase is concentrated at ! radians, indicating antiphase is a stable pattern. On plateau 2, relative phase is concentrated around 0
and ! radians, showing the bistability of antiphase and inphase coordination. For higher frequency plateaus the relative phase is
concentrated at 0 radians, indicating that inphase is the only stable pattern of coordination (adapted from [7] with permission)

Experimental studies of bimanual rhythmicmovement
demonstrate that humans in the absence of learning pro-
cedures are able to produce two patterns of coordination
at low frequency values, but only one – the symmetrical,
in-phase mode – as frequency is scaled beyond a critical
value. This is a remarkable result given the complexity of
the nervous system, the body and their interaction with the
world.

Consider another example, this time involving a hu-
man coordinating with an environmental signal [115,218].
In this experimental setup a single limb or finger is moved
such that peak flexion occurs in between the beats of a pac-
ing metronome, i. e. in a syncopated fashion. When the
metronome frequency is increased, once again a critical
value is reached where participants switch spontaneously
to coordinating peak flexion on the beat, i. e. in a pattern
of synchronization with the metronome. No such switch-
ing occurs when subjects begin in the synchronized mode
of coordination. Wemay refer to these effects as a very ba-
sic example of coordination between an organism and its
environment.

Now, consider the case of two people interacting with
each other, an elementary form of interpersonal or so-
cial coordination. In this situation, each individual is in-
structed to oscillate a limb (the lower leg in this case) in

the same or opposite direction to that of the other per-
son [170]. In order to do the task, there must be a medium
of interaction (vision, sound, touch, smell. . . ) through
which humans can couple. In this case, the two people
watch each other (for details of this and other work see
! Social Coordination, from the Perspective of Coordi-
nation Dynamics). Then, either by an instruction from
the experimenter or by following a metronome whose fre-
quency is systematically increased, the social dyad speeds
up their movements. When moving their legs up and
down in the same direction, the two members of the dyad
remain synchronized across a broad range of speeds. How-
ever, when moving their legs in the opposite direction
(one person’s leg extending at the knee while the other’s
is flexing), such is not the case. Once again at a cer-
tain critical rate participants change their behavior spon-
taneously so that their legs now move in the same direc-
tion.

The ‘nonlinear’ paradigm of coordination dynamics as
illustrated in these three simple experiments has led to
a wide range of investigations in many fields and a sur-
prising variety of contexts (see Sect. “Collective Minds”
for brief summary; also Books and Reviews) including de-
tailed studies of underlying brain mechanisms using the
full armamentarium of imaging technologies. Although
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Coordination Dynamics, Figure 2
A pattern of generic results from combined brain and behavioral studies of coordination (adapted from [81]). On the left are be-
havioral results showing how relative phase variability is initially higher and increases more rapidly with the control parameter of
frequency for syncopated antiphase (filled squares) than synchronized inphase coordination (open circles) with an external event.
On the right are corresponding brain activations that comprise a network that is exquisitely sensitive to the stability of antiphase
coordination. Areas depicted are left and right ventral premotor cortex (vPMC), pre supplementary motor area (pre-SMA) and right
insula. The X Y Z Talairach coordinate of the peak voxel for each region is provided. Notice how the behavioral and brain data track
each other

the findings would take us too far afield for present pur-
poses ([19,20,191]; for reviews see [59,81]) two particular
results are worth noting. First is that the basic paradigm
has led to the first direct evidence of phase transitions
in the human brain seen using both large scale electrode
EEG [143,216] and SQuID arrays [35,61,62,108,123,124].
Second, and even more telling, is that fMRI evidence in-
dicates that regardless of whether one is coordinating the
two hands or coordinating with an external signal, a com-
mon network concerned with the stability of coordination
is involved (see [81,156] for reviews).

The pattern of experimental findings described in this
section illustrates an important conceptual distinction be-
tween coordination dynamics and other theories of self-
organization [163]. In the latter, at bifurcation points or
phase transitions, the system switches to a new, higher
level of organization called a dissipative structure. Dissipa-
tive structures are so named because, compared with the
“simpler” structures or patterns they replace, they require
more energy to sustain them (ibid., p.xv). Not so in the
order-order transitions of coordination dynamics. In co-

ordination dynamics, the new organization that appears
at bifurcation points is ‘simpler’ than the one it replaces
and requires less energy. For example, brain electrical ac-
tivity actually drops across the antiphase to inphase tran-
sition even though the system is being driven faster [124].
In Fig. 2, blood oxygen level dependent (BOLD) activity
in certain brain regions is shown to increase as the sta-
bility of the antiphase pattern decreases. It is obvious that
the increasing metabolic energy demands of the brain for
antiphase relative to inphase coordination will diminish
once the transition to in phase occurs. Thus, the key prin-
ciple behind the ‘simpler’ self-organizing structures that
emerge in coordination dynamics are based, not (or not
only) upon energy per se as in the theory of dissipative
structures, but on the system’s information processing de-
mands. Intuitively, the antiphase pattern is more difficult
to coordinate as rate or frequency is increased causing the
system to switch to a pattern that is easier to perform un-
der the current conditions. Importantly, coordination dy-
namics replaces vague terms such as ‘task difficulty’ and
‘task complexity’ by quantitative behavioral measures of
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stability and quantitative brain measures of BOLD and
neuroelectric activity.

The TheoreticalModeling Strategy of Coordination
Dynamics: Symmetry and Bifurcations

The three pieces of experimental evidence described above
cut across entirely different kinds of things and events (au-
ditory, visual and proprioceptive sensations, finger and leg
movements, people and brains, etc.). The common de-
nominator is that all these things and processes are mean-
ingfully coupled together in time under particular bound-
ary conditions (task instructions, environmental context,
manipulated parameters, etc.). The phenomena observed
hint at an aspect that any basic law should exhibit, namely
that although the patterns of coordination observed are re-
alized by different physical structures and physicochemi-
cal processes, laws and regularities are abstract and rela-
tional.

How then do we go about identifying the actual under-
lying laws? More specifically, how do we explain the coor-
dinative phenomena observed experimentally? As stressed
above, in contrast to certain physical systems like the laser,
in biological coordination the path from the microscopic
level to collective order parameters is not known and can-
not (yet?) be derived from first principles like conservation
laws. In coordination dynamics we have to: a) identify the
order parameters or coordination variables and their low-
dimensional dynamics empirically; b) determine the key
control parameters that move the system though its coor-
dinative states; and c) relate different levels though a study
of the individual subsystems and their nonlinear interac-
tion.

Determining the dynamics of coordination variables is
non-trivial. In all three experimental situations, the rela-
tive phase ! or phase relation between the component el-
ements appears to qualify as a suitable order parameter or
coordination variable. The reasons are as follows: ! char-
acterizes the patterns of spatiotemporal order observed, in
phase and anti-phase; ! changes far more slowly than the
variables that describe the individual coordinating com-
ponents (e. g., position, velocity, acceleration, electromyo-
graphic activity of contracting muscles, neuronal ensem-
ble activity in particular brain regions, etc.); ! changes
abruptly at the transition and is only weakly dependent on
parameters outside the transition; and ! appears to obey
a dynamics in which the patterns may be characterized as
attractors or attractive states of some underlying dynami-
cal system. Since in all cases the frequency or rate clearly
drives the system through different coordination patterns

without actually prescribing them, frequency qualifies as
a control parameter.

Determining the coordination dynamics means map-
ping observed, reproducibly stable patterns onto attrac-
tors of the dynamics. A general strategy is to assume suffi-
ciently higher order dynamics and expand the vector field
of these dynamics in a Fourier series:

!̇ D f (!) D a0 C a1 sin(!)C a2 sin(2!)C : : :
C b1 cos(!)C b2 cos(2!)C : : : : (1)

Symmetry may be used to classify patterns and restrict the
functional form of the coordination dynamics. Symme-
try means “no change as a result of change”: pattern sym-
metry means a given pattern is symmetric under a group
of transformations. A transformation is an operation that
maps one pattern onto another, e. g. in the first experi-
mental case, left-right transformation exchanges homolo-
gous limbs within a bimanual pattern. If all relative phases
are equivalent after the transformation, then the pattern
is considered invariant under this operation. Symmetry
serves two purposes. First it serves as a pattern classifi-
cation tool allowing for the identification of basic coordi-
nation patterns that can be captured theoretically. Given
a symmetry group, one can determine all invariant pat-
terns. Second, imposing symmetry restrictions on the dy-
namics itself limits possible solutions and allows one to
arrive at a coordination dynamics that contains the pat-
terns as different stationary states of the same nonlinear
dynamical system. In other words basic coordination pat-
terns correspond to attractors of the relative phase for ade-
quate parameter values. For example, left-right symmetry
of homologous limbs leads to invariance under the trans-
formation ! ! ! so that the simplest dynamical system
that accommodates the experimental observations is:

!̇ D f (!) D "a sin(!) " 2b sin(2!) (2)

where ! is the relative phase between the movements of
the two individuals, !̇ is the derivative of ! with respect to
time, and the ratio b/a is a control parameter correspond-
ing to the movement rate in the experiment. An equivalent
formulation of Eq. (1) is

!̇ D "@V (!)/@! with V(!) D "a cos !"b cos 2! : (3)

In the literature, Eqs. (2) and (3) are the equations at the
collective level of the HKBmodel of coordinated behavior,
after Haken, Kelso and Bunz [76,106,139]. Figure 3 (top)
allows one to develop an intuitive understanding of the be-
havior of Eqs. (2),(3), as well as to connect the key concepts
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Coordination Dynamics, Figure 3
The potential, V(") of Eq. (3) (with#! D 0) and Eq. (5) (with#! ¤ 0). Blackballs symbolize stable coordinated behaviors andwhite
balls correspond to unstable behavioral states (see text for details)

of stability and instability in self-organized dynamical sys-
tems to the observed experimental facts.

The dynamics can be visualized as a particle moving
in a potential function V (!). The minima of the poten-
tial are points of vanishing force, giving rise to stable so-
lutions of the elementary coordination dynamics. As long
as the speed parameter (b/a) is slow, meaning the cycle
period is long, Eq. (3) has two stable fixed point attrac-
tors, coordinative states at ! D 0 and ! D ˙" rad. Thus,
two coordinated behavioral patterns coexist for exactly the
same parameter values, the essentially nonlinear feature of
bistability (Table 1). Such bi- and in general multi-stabil-
ity is the dynamical signature of multifunctionality which
can be seen at many levels in living things. As the ratio
b/a is decreased,meaning that the cycle period gets shorter
as the system speeds up, the formerly stable fixed point
at ! D ˙" rad becomes unstable, and turns into a repel-
lor (open circles). Any small perturbation will now kick
the system into the basin of attraction of the stable fixed
point corresponding to an in-phase coordination pattern
at ! D 0. Notice also that once there, the system’s behavior
will stay in the in-phase attractor, even if the direction of
the control parameter is reversed. This is called hysteresis,
a basic form of memory in nonlinear dynamical systems.

What about the individual components? Research
has established that these take the form of self-sustain-
ing oscillators, archetypal of all time-dependent behav-
ior [12,14,47,92,93]. The particular functional form of the

oscillator need not occupy the reader here (see ! Move-
ment Coordination which uses empirical facts and sym-
metry arguments to restrict and thereby identify the com-
ponent dynamics). More important is the nature of the
nonlinear coupling that produces emergent coordination.
The simplest, perhaps fundamental biophysical coupling
that guarantees all the observed emergent properties of co-
ordination: multistability, flexible switching among coor-
dination states and primitive memory, is:

K12 D
!
Ẋ1 " Ẋ2

" ˚
˛ C ˇ(X1 " X2)2

#
; (4)

where X1 and X2 are the individual components and
˛ and ˇ are coupling parameters. Notice that the ‘next
level up’, the level of coordinated behavioral patterns and
the dynamical rule that governs them (Eqs. (2) and (3)),
can be derived from the level below, the individual com-
ponents and their nonlinear interaction. One may call this
constructive reductionism: by focusing on adjacent levels,
under the boundary constraints of the task, the individ-
ual parts can be put together to create the behavior of the
whole.

The basic self-organized dynamics, Eqs. (2) and (3)
have been extended in numerous ways, only a few of which
are mentioned here.

# Critical slowing down and enhancement of fluctuations.
Introducing stochastic forces into Eqs. (2) and (3)
([175,210,211] see Chap. 11 in [74] and [101,121] for



Coordination Dynamics C 1549

a thorough discussion) allows key predictions of coor-
dination dynamics to be tested and quantitatively eval-
uated [113,121,172]. Critical slowing is easy to under-
stand from Fig. 3 (top). As the minima at ! D ˙" be-
come shallower and shallower, the time it takes to ad-
just to a small perturbation takes longer and longer.
Thus, the local relaxation time is predicted to increase
as the instability is approached because the restoring
force (given as the gradient of the potential) becomes
smaller. Likewise, the variability of ! is predicted to
increase due to the flattening of the potential near the
transition point. Both predictions have been confirmed
in a wide variety of experimental systems, including
recordings of the human brain ([81,100,174] for re-
view).

# Symmetry breaking. Notice that Eqs. (2) and (3) are
symmetric: the dynamical system is 2" periodic and is
identical under left-right reflection (! is the same as
"!). This assumes that the individual components are
identical, which as remarked upon earlier, is seldom the
case in living things where symmetries are broken all
the time.

In terms of the development of the theory, an important
experimental example of symmetry breaking is the case
of coordinating movement with a visual stimulus: visual
stimuli and limb movement are obviously not equivalent.
Thus ! ! ! symmetry cannot be assumed. This means
that symmetry partners of coordination patterns with sys-
tematic phase leads or lags do not coexist at the same pa-
rameter values. To accommodate this fact, a term #! is
incorporated into the dynamics [115]:

!̇ D #! " a sin! " 2b sin 2! ; and
V(!) D "#!! " a cos ! " b cos 2!

(5)

for the equation of motion and the potential respectively.
Note that Eq. (5) falls out naturally from an analysis of

the oscillators, !1 and !2, viz.

!̇ D !2
1 " !2

2
2˝

C (˛ C 2ˇR2) sin ! " ˇR2 sin 2! (6)

for

#! D !2
1 " !2

2
2˝

$ !1 " !2 (7)

with

a D "(˛ C 2ˇR2)

b D 1
2ˇR

2 :
(8)

Small values of #! shift the attractive fixed points (Fig. 3
middle) in an adaptive manner. For larger values of #!

the attractors disappear entirely (Fig. 3 bottom) causing
the relative phase to drift: no coordination between the
components appears to be possible. Note, however, that
the dynamics still retain some curvature (Fig. 3 bottom
right): even though there are no attractors there is still
attraction to where the attractors used to be. The reason
is that the difference (#!) between the individual com-
ponents is sufficiently large that they do their own thing,
while still retaining a tendency to cooperate. The intro-
duction of the symmetry breaking term #! in Eq. (5)
changes the entire coordination dynamics (layout of the
fixed points, bifurcation structure) of the original HKB
system in which #! D 0. This is important to realize
because it is the subtle interplay between the coupling
(k D b/a) and the symmetry breaking term#! in Eq. (5)
that gives rise tometastability.

Sometimes in the literature Eq. (5) is referred to collec-
tively as the Haken–Kelso–Bunz equation. Though con-
venient, this is technically incorrect and fails to recognize
both the intellectual contributions to its extension and the
conceptual consequences thereof. For reasons of symme-
try and simplicity, the original HKB equation did not con-
tain the symmetry breaking term, #! [115] nor did it
treat fluctuations explicitly [175] both of which are cru-
cial for capturing the broad range of phenomena observed
and testing further predictions. In particular, without #!
there is: a) no fixed point shift, a sign of adaptation to
changing circumstances, see Fig. 3 and 4; b) the bifurca-
tion is a saddle node not, as in the original HKB equation,
a pitchfork. These are different normal forms [98]; and c)
most important of all, the original HKB equation does not
and cannot exhibit metastability which is the key to un-
derstanding the complementary relationship between the
synergic tendency of the elements to couple (integration)
and at the same time to express their individual differences
(segregation). The oscillators in the original HKB formu-
lation were identical thereby excluding metastability. For
these reasons, it seems wise to refer to Eq. (5) (with its
stochastic aspect included) as the extendedHKB equation.

Equation (5) is a bit strange. Even though it is an order
parameter equation of motion that describes coordinative
behavior (in words, phi dot is a function of phi), it includes
also a parameter (#!) that arises as a result of differences
among the individual components. Equation (5) is thus
a strange mixture of the whole and the parts, the global
and the local, the cooperative and the competitive, the col-
lective and the individual. Were the components identi-
cal, #! would be zero and we would not see component
differences affecting the behavior of the whole (Fig. 3 top
row). Equation (5) would simply reflect the behavior of the
collective untarnished by component properties, a purely
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Coordination Dynamics, Figure 4
Elementary coordination law (Eq. (5)). Surface formed by a family of flows of the coordination variable " (in radians) as a function
of its time derivative "̇ for increasing values of#!. For this example, the coupling is fixed: a D 1 and b D 1. When "̇ reaches zero
(flow line becoming white), the system ceases to change and fixed point behavior is observed. Note that the fixed points here refer
to emergent coordination states produced by nonlinearly coupled elements. Stable and unstable fixed points at the intersection of
the flow lines with the isoplane "̇ D 0 are represented as filled and open circles respectively. Three representative lines labeled
1 to 3 illustrate the different régimes of the coordination dynamics. Following the flow line 1 from left to right, two stable fixed
points (filled circles) and two unstable fixed points (open circles) exist. This flow belongs to the multistable (here bistable) régime of
dynamics. Following line 2 from left to right, one pair of stable and unstable fixed points is met on the left, but notice the complete
disappearance of fixed point behavior on the right side of the figure. That is, a qualitative change (bifurcation; phase transition) has
occurred due to the loss of stability of the coordination state near antiphase,! rad. The flow nowbelongs to themonostable régime.
Following line 3 from left to right, no stable or unstable fixed points exist yet a subtle form of coordination – neither completely
ordered (synchronized) nor completely disordered (desynchronized) – still remains. This is the metastable régime

emergent interaction – the HKB equation. It is the fact that
both the components and their (nonlinear) interaction ap-
pear at the same level of description that gives rise to the
array of coexisting tendencies characteristic of metastabil-
ity. The history of coordination (Sect. “History of Coor-
dination Dynamics: Synergy and Rhythmic Order”) may
now be seen in a new light: Eq. (5) is a basic representation
of a synergy, a low dimensional dynamic of a metastable
organization in which the tendency of the parts to act to-
gether coexists with a tendency of the parts to do their
own thing (see Chap. 4 in [100]). If indeed the synergy is
a unit of life and mind as proposed in [105,107] then it is
metastability that endows the synergy with robustness and
flexibility, enabling the same parts to participate in multi-
ple functions.

Metastable CoordinationDynamics

From States to Tendencies

Etymologically, ‘metastability’, comes from the latin ‘meta’
(beyond) and ‘stabilis’ (able to stand). In coordination dy-
namics, metastability corresponds to a régime near a sad-
dle-node or tangent bifurcation in which stable coordi-
nation states no longer exist (e. g., in-phase synchroniza-
tion where the relative phase between coordinating com-
ponents lingers at zero), but attraction remains to where
those fixed points used to be (see Fig. 3, bottom row).
This gives rise to a dynamical flow consisting of both phase
trapping and phase scattering.

To best visualize the emergence of metastability, Fig. 4
shows the flow of the dynamics for the elementary coor-
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Coordination Dynamics, Figure 5
How the key coordination variable or order parameter of the elementary coordination law (Eq. (5)) behaves over time. Shown is
a family of trajectories of the relative phase " over time (in Arbitrary Units) arising from a range of initial conditions sampled be-
tween 0 and 2! radians, in the multistable (a), monostable (b) and metastable régimes (c) of Eq. (5). For the uncoupled case (d) the
trajectories never converge indicating that the oscillations are completely independent of each other. Trajectories in themultistable
régime (a) converge either to an attractor located slightly above" D 0 radmodulo 2! or to another attractor located slightly above
" D ! radmodulo 2! . In themonostable régime (b), trajectories converge to an attractor located slightly above" D 0 radmodulo
2!. In the trajectories of relative phase for the metastable régime (c unwrapped to convey continuity), there is no longer any per-
sisting convergence to the attractors, but rather a succession of periods of rapid drift (escapes) interspersed with periods inflecting
toward, but not remaining on the horizontal (dwells). Note dwells near" D 0 rad modulo 2! in the metastable régime (e. g. dwell
at about 4! rad annotated 1 in c) and nearby " D ! rad modulo 2! (dwell at about 3! rad annotated 2 in c) are reminiscent of
the transient obtained for certain initial conditions in the monostable régime (Fig. 5b, annotation 3). The key point is that in the
metastable régime the system’s behavior is a blend of coupled and independent behavior

dination law (Eq. (5)) across a range of #! values with
the coupling parameter, k D b/a D 1 fixed. Stable fixed
points (attractors) are presented as filled circles and un-
stable fixed points (repellors) as open circles. Here, fixed
points of the coordination dynamics correspond to phase-
and frequency relationships between oscillatory processes.

The surface shown in Fig. 4 defines three regions un-
der the influence of the symmetry breaking term #!. In
the first region present in the lower part of the surface,
the system is multistable: two stable attracting fixed points
(filled circles) represent possible alternative states. Which
one the system settles in depends on initial conditions and
the size of the basin of attraction. In an intermediate re-
gion, following the line labeled 2 from left to right, the
weakest attractor near anti-phase (right side) disappears
after it collides with its associated repellor somewhere

near #! D 1:3, but the strongest attractor (left side) is
still present as well as its repellor partner. Finally in the
third region in the upper part of the surface, the dynam-
ics become metastable. Following the line labeled 3 from
left to right, no fixed points exist anymore: this part of
the surface no longer intersects the isoplane !̇ D 0 where
the fixed points are located. Strictly speaking coordination
states qua frequency- and phase-synchrony no longer ex-
ist in the metastable régime of the coordination dynamics.
Metastability is thus a subtle blend of coupling and intrin-
sic tendencies in which behavior is neither completely or-
dered (synchronized) nor completely disordered (desyn-
chronized). Both tendencies coexist.

How do individual and coordination behavior evolve
in time in the metastable régime? A unique flow now
exists in which the dynamics may be characterized by
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places where the trajectory of the coordination variable
converges and pauses around the horizontal and places
where the trajectory drifts or diverges from the horizon-
tal. Let us define the former as a dwell time, and the lat-
ter as an escape time. In Fig. 5c we show two locations
for the dwell times: one that lingers a long time before es-
caping (e. g. Fig. 5c, annotation 1) slightly above the more
stable in-phase pattern near 0 rad (modulo 2"), and the
other that lingers only briefly (e. g. Fig. 5c, annotation 2)
slightly above" (modulo 2"). These inflections recur over
and over again as long as the system self-organizes in
the metastable régime, i. e. as long as it does not undergo
a phase transition to a locked or unlocked state. Despite
the complete absence of phase-locked attractors, the co-
ordinating elements in the metastable régime do not be-
have totally independently. Rather, their interdependence
takes the form of dwellings (phase gathering tendencies)
nearby the remnants of the fixed points (cf. Fig. 3 bot-
tom; Figs. 4, 5c) and may be nicely expressed by concen-
trations in the histogram of the relative phase (see Chap. 4
in [100]).

Recently metastability has been hailed as a “new prin-
ciple” of coordination in the brain and has been em-
braced by a number of neuroscientists as playing a role
in various cognitive functions, even consciousness itself
(e. g. [44,45,57,58,111,127,187,212]). According to a recent
review [49]:

Metastability is an entirely new conception of brain
functioning where the individual parts of the brain
exhibit tendencies to function autonomously at the
same time as they exhibit tendencies for coordinated
activity [19,20,97,100].

For Coordination Dynamics, metastability’s significance
lies not in the word itself but in what it means for un-
derstanding coordination in living things. In coordination
dynamics, as shown in its most elementary form (Eq. (5)),
metastability is not a concept or an idea, but a direct re-
sult of the broken symmetry of a system of (nonlinearly)
coupled (nonlinear) oscillators. Such a design principle for
the brain seems highly plausible given that rhythms in the
brain are ubiquitous, operate over a broad range of fre-
quencies and are strongly associated with various sensory,
motor and cognitive processes [10,24,100].

The Creation of Information

There is another reason for proposing metastable coordi-
nation dynamics as the essential way the brain and perhaps
all complex organizations work. It concerns an analogy to
how physicists understand how we know the universe we

live in. According to Quantum Mechanics, out of a uni-
verse in which quantum indeterminacy rules – the wave
function is spread out over all of space – nature selects an
alternative. Information is thereby created. The way this
is done in practice is that a device is built in which an in-
teractive material is placed in a physically, electrically or
chemically metastable state. According to the late quan-
tum measurement theorist, H.S. Greene [69]:

It is the observable transition between this metastable
state and a more stable state that conveys the essen-
tial information concerning a sub-microscopic event
that would otherwise go undetected . . . The func-
tional material of the detector must be macroscopic
and in a metastable state which allows the quantal
interaction to become manifest at the macroscopic
level. (see p. 173 in [69])

This is how some physicists view the creation of informa-
tion: bit from it, as it were (in contrast to John Archibald
Wheeler’s ‘it from bit’). Quantum Mechanics thus im-
plies the creation of new information in the process of
measurement and observation. Likewise, we have seen in
the human brain that information (as a marginally cou-
pled, phase-locked state) is created and destroyed in the
metastable régime of the coordination dynamics, where
tendencies for apartness and togetherness, individual and
collective, segregation and integration, phase synchrony
and phase scattering coexist. New information is created
because the system operates in a special régime where the
slightest nudge will put it into a new coordinated state.
In this way, the (essentially nonlinear) coordination dy-
namics creates new, informationally meaningful coordi-
nation states that can be stabilized over time. The stabil-
ity of information over time is guaranteed by the coupling
between component parts and processes and may consti-
tute a dynamic kind of (non-hereditary) memory. It does
not seem a big step then to say that once created, this
information can then guide, modify and direct the sys-
tem’s dynamics. As we shall see in Sect. “Modifying Coor-
dination: Meaningful Information” studies of intentional
change, environmental change, learning and so forth have
demonstrated both empirically and theoretically that an
intentional goal – as memorized information – acts in
the same information space as the coordination dynamics
([114,173]; see also [141).

Coordination ofMultiple Components:
FromQuadrupeds to Brains

Phase- and frequency synchronization, the coupling
among oscillatory processes, are an example, par excel-
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lence, of self-organization in natural systems [76,119,132,
161,219]. Think of the famous clocks on the wall, no two
exactly the same in frequency, but somehow ticking per-
fectly in time with each other. The weakest of coupling,
whether through vibration in the wall or displacement
of the air, enables the clocks to be mutually coordinated
without any coordinator at all. Similar phenomena have
been seen in the brain and have been hypothesized to play
a key role in “binding”: oscillations in the brain appear
to be coupled or “bound” together into a coherent net-
work when people attend to a stimulus, perceive, think
and act (e. g., [34,43,67,184,214]). For example, synchro-
nization in the so-called gamma band (approx. 30–50Hz)
has been proposed as a neural correlate of consciousness.
The Journal Science announced the synchronization ef-
fects observed in monkey cortex as “The Mind Revealed”
(see also [34]).

The brain, it seems, has latched on to phase synchrony
as a principle of self-organization. Though the connec-
tion is seldom made, phase- and frequency- synchroniza-
tion is typical of central pattern generators (CPGs), neu-
ral circuits in vertebrates and invertebrates that generate
timing sequences without feedback from the periphery or
the help of reflexes (see Sect. “Empirical Foundations of
Coordination Dynamics: PatternGeneration, Stability and
Phase Transitions”; [70,71]). Indeed, it is the temporal or-
der observed that allows us to talk about ‘pattern genera-
tors’ in the first place. Though the specific mechanisms are
obviously different between the visual cortex of the mon-
key and the stomatogastric ganglion of the lobster, the dy-
namic patterns are the same, hinting at the source of an
underlying principle [97,100,174]. But what form might
the coordination dynamics of the brain take?

Obviously when it comes to the brain there are, in
principle, very many regions to coordinate. In practice,
however, only a restricted set of regions appear to be func-
tionally connected during particular tasks (see, e. g. Fig. 2).
The idea, then, is that one could use the Central Pat-
tern Generator (CPG) design for quadrupedal locomo-
tion [32,66,176] as a basic model of interaction among
cortical pattern generators. This is not as far fetched as
it seems. It is likelier than not that the precursors to the
structure and function of the cerebral cortex are self-con-
tained circuits in the spinal cord and brainstem that gener-
ate intrinsic patterns of rhythmic activity [70,71,220]. Such
CPGs typically work by transforming tonic driving inputs
into detailed spatiotemporal patterns of (usually oscilla-
tory) activity. Several of the properties of CPGs are con-
served throughout evolution rendering them a likely can-
didate for the basic building blocks of the brain [72]. The
hypothesis proposed here is that cortical pattern genera-

Coordination Dynamics, Figure 6
A schematic of brain coordination dynamics among four brain
regions. Each circle represents an area of the brain capable of
intrinsic oscillation and the arrows correspond to connections
among brain areas giving rise to cortical pattern generation (see
text)

tors may underlie the coordination that is needed for ev-
erything the brain is purported to do – think, feel, remem-
ber, act, socialize, etc.

Following the footsteps of basic coordination dynam-
ics, in the quadruped analogy each “limb” corresponds
to a neural region capable of intrinsic oscillatory activity
and the patterns emerge from (broken) symmetries and
changes in coupling between neural regions. For exam-
ple, Fig. 6 shows a cartoon of the neuroanatomical con-
nections underlying the anterior-posterior coordination of
the hemispheres of the brain.

The relevant variables are four phase variables, !i j
(with i 2 fright, left hemisphereg; j 2 fanterior, posteriorg
characterizing the oscillatory behavior of each brain area
with respect to its timing. Much research on coordination
dynamics shows that the relative phase is a key coordi-
nation variable or order parameter although it is quite
possible that amplitudes and frequencies are important
variables too [4,57,111]. For the sake of simplicity, we
stick to the case of interareal cortical coordination be-
tween 4 brain regions, where a set of 3 relative phases
suffices to characterize any pattern uniquely.

As already illustrated, a key notion is to use symmetry
to classify patterns and restrict the functional form of the
coordination dynamics. Here, pattern symmetry means
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a given cortical pattern is symmetric under a group of
transformations. As we have noted, a transformation is an
operation that maps one pattern onto another, e. g. the an-
terior-posterior (a-p) transformation exchanges anterior
and posterior regions within a cortical pattern. If all rel-
ative phases are equivalent after the transformation, then
the pattern is considered invariant under this operation.

Symmetry serves as a pattern classification tool allow-
ing for the identification of basic cortical patterns that can
be captured theoretically. Given a symmetry group, one
can determine all invariant patterns. For example, certain
idealized cortical patterns are invariant under the symme-
try group generated by the following operations: exchange
of anterior and posterior, exchange of left and right, and
inversion of all phases (inversion of time). A good way to
illustrate these patterns is with phase pictograms.

Imposing symmetry restrictions on the dynamics itself
limits possible solutions and allows one to arrive at a co-
ordination dynamics that contains the patterns as different
stationary states of the same nonlinear dynamical system.
In other words basic cortical patterns correspond to attrac-
tive states of the relative phase for adequate parameter val-
ues:

!̇i j D
1X

nD1
fAn sin(n(!i j ! ! î j))

Homologous contralateral coupling (white arrows)
C Cn sin(n(!i j ! !i ĵ))

Ipsilateral coupling (gray arrows)
C En sin(n(!i j ! ! î ĵ))g
Nonhomologous contralateral coupling (black arrows)

(9)

where An ;Cn and En are parameters and a hat over
an index means that the opposite value is taken, e. g. if
i D right, then î D left.

To analyze the solutions to the phase dynamics, for the
sake of simplicity the coordination dynamics may be re-
stricted to second order. Higher orders generate parame-
ter régimes where many patterns may coexist; first order
removes the possibility that some patterns may coexist.
Also, diagonal coupling (black arrows in Fig. 6) may be
neglected by setting En D 0. Notice that an effective di-
agonal coupling still exists because two couplings are suf-
ficient to stabilize any pattern of activity among 4 corti-
cal areas. Moreover, it is easier to generalize a system with
contralateral and ipsilateral couplings to systems in which
more areas are involved.

In sum, following exactly the basic theoretical model-
ing strategy (Eq. (1)) the dynamical system takes the fol-
lowing form:

!̇rp D A1[sin(!rp " !lp)C sin(!la)]
C A2[sin(2(!rp " !lp))C sin(2!la)]
C 2C1 sin(!rp)C 2C2 sin(2!lp)

!̇lp D A1[sin(!lp " !rp)C sin(!la)]
C A2[sin(2(!lp " !rp))C sin(2!la)]
C C1[sin(!lp " !la)C sin(!rp)]
C C2[sin(2!lp " !la))C sin(2!rp)]

!̇la D 2A1 sin(!la) " !lp)C 2A2 sin(2!la)
C C1[sin(!la " !lp)C sin(!rp)]
C C2[sin(2(!la " !lp))C sin(2!rp)] :

(10)

Solving !̇i j D 0 yields stationary solutions that corre-
spond to idealized cortical “gaits”. Trot, pace, gallop and
jump patterns may be identified as multistable or monos-
table solutions in various parameter régimes. Patterns of
lower symmetry can also be captured. Obviously the fore-
going analysis is intended for illustrative purposes only.
The examples provided in Fig. 7 and 8 are only a few of
very many possible cortical patterns that can be obtained
by further symmetry groups. It is important to empha-

Coordination Dynamics, Figure 7
Brain phase pictograms. Each brain area is represented as a cir-
cle. The spatial arrangement of the circles viewed from looking
downon the top of the head represents the brain’s hypothesized
anterior-posterior and left-right functional organization. Phase
is represented by the angle the stick makes on each circle, with
the reference phase being zero for the right frontal region. If all
phases are rotated by the same amount in the same direction,
the cortical coordination pattern remains the same. Thepatterns
in a, b, c and d are those idealized cortical patterns that remain
invariant under anterior-posterior, left-right and time inversion
operations. Notice that the relativephasebetweenany twobrain
regions is either inphase or antiphase
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size that not all patterns in a given symmetry group are
observable. Which ones are actually observed is dictated
by the coordination dynamics, in particular a given pat-
tern’s stabilitywhich, as we have seen, can bemeasured (cf.
Sect. “Empirical Foundations of Coordination Dynamics:
Pattern Generation, Stability and Phase Transitions”). As
in the simpler cases of coordination dynamics described
above, switching among cortical patterns is due, not to
switches per se but to instabilities – phase transitions or
bifurcations in the phase dynamics. Neuromodulators are
candidate control parameters capable of sculpting cortical
patterns by leading the system through instabilities [130].
Moreover, when the oscillatory frequencies in the anterior
and posterior regions of the brain are slightly different,
a kind of partial coordination among cortical regions may
occur. This is exactly themetastable coordination dynam-
ics of the brain as described in the previous section. Here
again, the key point is that the rules of the game appear to
be run by principles of coordination dynamics and sym-
metry. As always, experiments are now needed to test this
hypothesis. EEG measures of cross-frequency phase syn-
chrony of the human brain may reflect a start in this direc-
tion (e. g., [84,158]). More direct attempts are underway in
our laboratory [199].

Coordination Dynamics, Figure 8
Representative brain phase pictograms corresponding to corti-
cal patterns of lower symmetry. Here the anterior-posterior sym-
metry is dropped and the cortical patterns that remain form two
one parameter families. One family consists of in-phase ordering
within anterior and posterior areas and any fixed phase relation
between anterior and posterior regions (a,b). The other family
(c,d) consists of anti-phase relations within frontal and anterior
regions and any fixed phase relations between them

“CollectiveMinds”

The basic coordination dynamics for two and four non-
linearly interacting components (Eqs. (2)–(10)) can read-
ily be elaborated as a model of emergent coordinated be-
havior or “group cohesion” among very many anatomi-
cally different components (see, e. g. [5]). Self-organized
behavioral patterns such as singing in a group or mak-
ing a “wave” during a football game are common, yet
unstudied examples. By virtue of information exchange
nearest neighbors adjust their motions to each other gen-
erating, and being influenced by, their social environ-
ment. Recently, Néda and colleagues [148,149] have ex-
amined a simpler group activity: applause in theater and
opera audiences in Romania andHungary. After an excep-
tional performance, initially thunderous incoherent clap-
ping gives way to slower, synchronized clapping. Measure-
ments indicate that the clapping period suddenly doubles
at the onset of the synchronized phase, and slowly de-
creases as synchronization is lost. This pattern is a cultural
phenomenon in many parts of Europe: a collective request
for an encore. Increasing frequency (decreasing period) is
a measure of the urgency of themessage, and culminates in
the transition back to noise when the performers reappear.
These results are readily explained by a model of a group
of globally coupled nonlinear oscillators [132]:

d!k
dt
D !k C

K
N

NX

jD1
sin(! j " !k) (11)

in which a critical coupling parameter, Kc determines the
differentmodes of clapping behavior.K is a function of the
dispersion (D) of clapping frequencies:

Kc D
r

2
"3 D : (12)

During fast clapping, synchronization is not possible due
to the large dispersion of clapping frequencies. Slower,
synchronized clapping at double the period arises when
small dispersion appears. Period doubling rhythmic ap-
plause tends not to occur in big open-air concerts where
the informational coupling among the audience is small.
K can also be societally imposed. In Eastern European
communities during communist times, synchronization
was seldom destroyed because enthusiasm was often low
for the “great leader’s” speech. For people in the West, the
cultural information content of different clapping patterns
may be quite different. Regardless, the mathematical de-
scriptions for coordinated behavior – of social dyads and
the psychology of large groups – are remarkably similar.
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Modifying Coordination:Meaningful Information

Unlike the behavior of inanimate things, the self-organiz-
ing dynamics of animate behavior is based on informa-
tion (Table 1), though not in the standard sense of data
communicated across a channel [180]. In coordination
dynamics, collective or coordination variables are context-
dependent and intrinsically meaningful. Context-depen-
dence does not imply subjectivity and lack of reproducibil-
ity. Nor does it mean that every new context requires a new
collective variable or order parameter. As we have seen al-
ready, for example, within- and between-person coordi-
nated behaviors are described by the same self-organizing
coordination dynamics. One of the consequences of iden-
tifying the latter is that in order to modify or change the
system’s behavior, new information (in the form say, of an
environmental input, a task to be learned, or an intention
to change behavior) is expressed in terms of parameters
acting on system-relevant collective dynamics. On the one
hand, the benefit of identifying collective variables is that
they embrace the full complexity of the system and hence
provide the relevant information about what to modify.
On the other, the collective variable dynamics – prior to
the introduction of any new information – influences how
that information can be used. The upshot is that infor-
mation is not lying out there as mere data: information is
meaningful to the extent that it modifies, and is modified
by, the collective variable dynamics.

A minimum mathematical form for the full coordina-
tion dynamics which encompasses both spontaneous self-
organizing tendencies and specific parametric influences is

!̇ D f (!)C f inf(!) (13)

where the first term is the typical so-called “intrinsic dy-
namics” e. g., of Eq. (5) or Eq. (10) and the second term
represents ‘informational forcing’, i. e., a perturbation of
the vector field of the dynamics attracting the system to-
ward a required coordination pattern. It is important to
emphasize that the plus sign in Eq. (13) is for operational
purposes only, affording the measurement of the comple-
mentary contributions to the coordination dynamics of
both spontaneous and directed (parametric) influences.
The conceptual advantage of Eq. (13) is that information
acts in the same space as the collective variables that define
the intrinsic coordination patterns, i. e., those patterns that
characterize spontaneous coordination tendencies. Thus,
information is not arbitrary with respect to the dynamics.
A corollary of this formulation is that information has no
meaning outside its influence on the intrinsic dynamics.
They are cut, as Sheets-Johnstone [182] remarks, from the
same dynamic cloth.

Intentional Dynamics

Self-organizing processes, in the manner of Haken’s syn-
ergetics, provide a theoretical foundation for all forms of
coordination. However, we do not want to throw the baby
out with the bathwater. Coordinated behavior often has
a goal-directedness to it as well. We humans, for example,
have no doubt whatsoever that it is us, and us alone, that
direct the motions of our own bodies. Where do agency
and directedness come from? A clue comes from consid-
ering the elementary spontaneous movements we are born
with which consist of a large repertoire of spontaneous
(thus self-organized) movements – making a fist, kicking,
sucking, etc. etc. Only at some point does the child re-
alize – through his own movements and the kinaesthetic
sensations they give rise to – that these movements are his
own. If one attaches the string of a mobile to his foot, he
comes to realize that it is his kicking movements that are
causing the mobile to move in ways that he likes. The pre-
existing repertoire enables activities to happen before we
make them happen. Evolutionarily constrained self-orga-
nizing coordination tendencies (‘intrinsic dynamics’) thus
appear to lie at the origins of conscious agency. They are,
in the words of the philosopher Maxine Sheets-Johnstone,
“the mother of all cognition”, presaging every conscious
mind that ever said “I”. From spontaneous self-organized
behavior emerges the self – “I am” “I do” and from there
a huge range of potentialities (‘I can do’). “I-ness” arises
from spontaneity, and it is this “I” that directs human ac-
tion. As Sheets-Johnstone [182] cogently remarks, we lit-
erally discover ourselves in movement. In our spontaneity
of movement, we discover arms that extend, mouths that
open, knees that flex and so forth. We make sense of our-
selves as living things.

Following these insights, consider briefly how Coor-
dination Dynamics addresses the role of intentional in-
formation in bringing about behavioral change. How is
the process of intentionally switching among patterns of
coordination to be understood? According to the the-
ory, the relative stability of the intrinsic patterns plays
a role in determining how easily the system can switch
in and out of coordination states. As defined previously,
“intrinsic dynamics” expresses the fact that the system
(which may include the brain) – prior to any specific in-
put – already possesses a repertoire of behavioral patterns
that are unique to each individual. Theoretically, inten-
tion parametrizes the intrinsic dynamics in two ways: (i)
by destabilizing an ongoing pattern and stabilizing a tar-
get pattern [114,137,171]; and (ii) by stabilizing an in-
trinsically unstable pattern that under the current circum-
stances might otherwise become unstable and switch (see
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Chap. 5 in [100], [114]). Measurement of switching time
shows that intention both acts upon and is constrained
by the intrinsic dynamics of coordination. First, the sys-
tem switches far faster from less stable to more stable pat-
terns (as measured by variability) than vice-versa. Second,
the data show that it is possible to intentionally stabilize
intrinsically unstable patterns under conditions in which
they would normally switch. Both results are in excellent
agreement with theory [114,171,173].

The neural basis of the interaction between intrin-
sic brain dynamic activity and intentional pattern selec-
tion and switching is just beginning to be studied and
the results look very promising [39]. Spontaneous switch-
ing between patterns is known to be associated with in-
creased activity in prefrontal, premotor and parietal re-
gions [3,37,146], a network that is compatible with the
stability dependent circuits described in Fig. 2 (see also
Jantzen & Kelso, 2007). Increased activity reported in spe-
cific brain regions appears to reflect the loss of pattern sta-
bility that precedes spontaneous pattern switching. New
results from our laboratory show that there is greater activ-
ity in the basal ganglia (BG) – a region known to be crucial
for starting and controlling voluntary movements [68] –
when moving from a more to a less stable pattern [39].
The heightened level of activity in BG may be related to
the stability of the original pattern, the stabilization of the
selected pattern switched into or both. Regardless, this in-
triguing result suggests that the basal ganglia play a key
role in parametrizing the coordination dynamics.

Stimulus (Parametric) Stabilization and Change

Not only internally generated information is able to stabi-
lize and destabilize coordination states under suitable cir-
cumstances: coupling sound, vision or touch conditions
to specific aspects of an individual movement have been
shown, not only to modify the movement but to glob-
ally stabilize coordination [25,50,122,133]. Thus the role
of ‘stimuli’ in Coordination Dynamics is much more than
to trigger preset motor commands or provide feedback to
the motor system. To account for these kinds of effects,
Jirsa and colleagues [89] introduced the notion of para-
metric stabilization: coupling specific sensory input para-
metrically to a set of limit cycle oscillators (see also [4,91]):

ẍ1 C f (x1; ẋ1)ẋ1 C !2x1 D g(x1; ẋ1; x2; ẋ2)C "(t)x1
ẍ2 C f (x2; ẋ2)ẋ2 C !2x2 D g(x2; ẋ2; x1; ẋ1)C "(t)x2

(14)

where f is a nonlinear oscillator function, g represents the
HKB coupling (Eq. (4)), ! is the eigenfrequency of the

oscillator and "(t) represents sensory information. Here
again in Eq. (14) we see a key aspect of coordination dy-
namics, namely that perception and action, sensory in-
formation and the dynamics of movement are inextrica-
bly linked. Notice the linkage in this case is of a paramet-
ric, multiplicative nature which is necessary to account for
both the local changes to component trajectories produced
by sensory information (called ‘anchoring’) and the global
stabilization effects on the coordination dynamics. Fink et
al. [50] for example, were able to show that such localized
and specific sensory information was capable of shifting
(and thereby delaying) the critical point at which phase
transitions occurred.

A Brief Survey of Applications and Elaborations
of CoordinationDynamics

The foregoing discussion pertains to just two of the many
kinds of adaptive modification of coordination dynam-
ics that have been investigated in the literature. Here
only a flavor can be provided. The sample includes, but
is by no means limited to: the processes underlying the
ability of biological systems to stabilize intrinsically un-
stable systems [26,54,199]; the initiation (including ‘false
starts’) and coordination of discrete, discontinuous be-
haviors [52,80,86,112,188,189] including neurally-based
comparisons with those of a continuous, rhythmic na-
ture [166,185]; the spontaneous recruitment and anni-
hilation of biomechanical degrees of freedom to accom-
plish task and environmental conditions [21,23,51,118];
the coordination dynamics of trajectory formation [22,38]
and cursive handwriting [6]; the important role that per-
ception [145] and attention [2,27,147,190,193,194] play
in modulating coordinative stability; how practice and
learning alter the entire coordination repertoire by re-
shaping the landscape of the coordination dynamics us-
ing competitive and cooperative mechanisms [53,140,151,
177,222,223]; the stabilization and consolidation of new
memorized states of coordination and the dynamics of the
forgetting process [128,129]; how handedness amplifies
asymmetries in the coordination dynamics [2,201], and
so forth. The same concepts and methods have been ap-
plied to problems ranging from maintaining posture and
stabilizing postural sway [8,9,42,83] to understanding how
concurrent cognitive tasksmodulate coordination dynam-
ics [159,183].

Theoretical research at the neural level has pro-
gressed from phenomenological modeling at behavioral
(e. g. [60,76,89,115,118,175,201]) and brain levels [88,205]
to neurobiologically-grounded accounts of both uniman-
ual [56,63,125] and bimanual coordination [87] that are
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based on known cellular and neural ensemble proper-
ties of the cerebral cortex. Recent work [85] has extended
this neural theory to include the heterogeneous connectiv-
ity between neural ensembles in the cortex. Once general
laws of coordination at behavioral and brain levels have
been identified, it has proved possible to derive them from
a deeper theory founded on neuroanatomical and neuro-
physiological facts, thereby causally connecting different
levels of description [117] for review). The neural theory,
in turn, poses a number of challenges to experiment, such
as how synaptic and cellular properties are influenced by
learning, arousal and attention [103].

Remarkable applications of coordination dynamics
have occurred in expected directions (though none the
less remarkable for all that) including many physical ac-
tivities and sports such as the relation between respiration
and locomotion [36], juggling [13,79], gymnastics [142],
running [41], tennis [157], swimming [179], boxing [135],
skiing [154], golf [125] and even riding horses [134] to
name only a few, as well as in entirely unexpected direc-
tions, such as modeling coordination of infant breathing
as a way to understand the effects of premature birth [65],
studies of coordination dynamics in children with Devel-
opmental Coordination Disorder [213] and the introduc-
tion of coordination dynamics therapy to treat a wide vari-
ety of CNS disorders and diseases (e. g. [167,168,169]; see
also [207]). Principles of coordination dynamics have been
shown to apply to perceptual grouping as nicely illustrated
by the classic bistable properties of reversible figures such
as the Necker cube (e. g. [100]), pattern recognition [77],
the visual perception of spatiotemporal inphase and an-
tiphase moving stimuli [18,40,78,221] and speech catego-
rization [28,202]. In many cases the foregoing research
findings have expanded, if not overturned, conventional
explanations of phenomena that have seldom considered
dynamics.

Increase in research activity using the concepts and
methods of coordination dynamics has been such that the
term has taken on a life of its own in different fields. Thus,
it is commonplace in the literature to hear the words ‘cog-
nitive’, ‘brain’, ‘neural’, ‘social’, ‘behavioral’, ‘developmen-
tal’ ‘multimodal’, ‘postural’, etc., qualify and precede the
words coordination dynamics. The dynamical approach is
currently center stage in a number of fields, for exam-
ple, dynamical neuroscience (e. g., [90,160]), dynamical
cognitive science (e. g., [16,162,186,209]), behavioral [217]
and task [165] dynamics, dynamical social psychology
(e. g., [15,155,206]), dynamical systems accounts of devel-
opment (e. g., [135,149,191,192,204]; see also [195]) and its
implications are under careful consideration in philosoph-
ical circles (e. g. [11,29,30,31,198]).

Future Directions and Conclusions: The
Complementary Nature of CoordinationDynamics

General laws and principles of biological coordination –
to the extent they exist – are, by definition, abstract and
mathematical. Yet, these laws are always conditioned by
and realized by specific mechanisms and contexts. Over
the last twenty-five years, often using the field of animate
movement as an entry point it has been shown that the
same coordination dynamics applies to functional coordi-
nation in a wide variety of situations. Although the basic
laws for a quantitative description of the phenomena ob-
served when human beings (and human brains) move, in-
teract with the environment and with each other are the
same, the anatomical, mechanical and physiological mech-
anisms realizing these dynamics are obviously not. Laws
and mechanisms are complementary aspects of coordina-
tion dynamics.

Current research and theory views coordination as
arising from the mutual interplay of constraints on multi-
ple levels of description – ranging from the intrinsic prop-
erties and modes of interaction among cells and cellular
ensembles in brain circuitry to biomechanical influences at
the behavioral level all the way to cognitive and task con-
straints. Coordination dynamics is not only a theoretical
framework, but also a research program that explicitly at-
tempts to incorporate and connect known constraints at
multiple levels of description. For instance, coordination
dynamics successfully identified and later quantified the
form of the nonlinear coupling among interacting compo-
nents. In showing that the stability and change of coordi-
nation is due to nonlinear interactions among individual
components coordination dynamics removes some of the
mysticism behind the contemporary terms “emergence”
and “self-organization”. At the same time, coordination
dynamics expands and modifies the concept of self-orga-
nization in non-living systems by introducing new con-
cepts to account for the fact that coordination is not only
characterized by self-organization but also by directed or
supervised forms of coordination. The two origins or cor-
nerstones of coordination dynamics may be reconciled
by showing how meaningful information originates from
self-organizing processes and may in turn modify them.

In studies of coordinated movement, the field to which
coordination dynamics owes its origins, it has proven use-
ful to try to isolate the role of various constraints and
how they are mediated by the central nervous system. On
the one hand, this strategy has helped identify different
factors that serve to stabilize coordination under condi-
tions in which it may otherwise become unstable and sus-
ceptible to change. On the other hand, a focus on iso-
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lating particular constraints can lead, albeit unwittingly,
to dichotomies (e. g., coordination principles versus neu-
romuscular-skeletal mechanisms of implementation) that
may not be so useful. In reality it seems safe to conclude
that a coalition of constraints – acting on multiple levels –
impinges upon the stability of coordination depending on
task and environmental context and the mover’s intent.
For example, the multilevel theory offered by Kelso [100]
connects task goals (Level 1) to constraints on nonlinear
oscillators (Level 3), the interactions among which deter-
mine the coordinative patterns observed (Level 2). Thus,
rather than pose “abstract laws of coordination dynamics”
against “neuromuscular-skeletal determinants of coordi-
nation”, more important is to understand how the balance
between identified constraints plays itself out in the course
of any coordinated activity. Situations in which constraints
are placed in competition with each other often prove to be
highly revealing [122].

Throughout this article, every effort has been made to
articulate the key notions of coordination dynamics, both
conceptual and technical, and to present them in close
proximity in order to help both the novice and the expert
reader. The behavioral simplicity of the basic coordination
patterns studied in the laboratory is deceptive; their un-
derstanding, however, requires recent advances in physics
and mathematics. The theoretical concepts and methods
of coordination dynamics are likely to play an ever greater
role in the social, behavioral, economic, cognitive and neu-
rosciences, especially as the interactions among disciplines
continues to grow. Up to now, the use of nonlinear dy-
namics is still quite restricted, and often metaphorical.
One reason is that the tools are difficult to learn, and re-
quire a degree of mathematical sophistication. Their im-
plementation in real systems is nontrivial, requiring a dif-
ferent approach to experimentation and observation. An-
other reason is that the dynamical perspective is often
cast in opposition to more conventional theoretical ap-
proaches, instead of as an aid or complement to under-
standing. The former tends to emphasize decentraliza-
tion, collective decision-making and cooperative behavior
among many interacting elements. The latter tends to fo-
cus on individual psychological processes such as inten-
tion, perception, attention, memory and so forth. Yet there
is increasing evidence that intending, perceiving, attend-
ing, deciding, emoting and remembering have a dynamics
as well. The language of dynamics serves to bridge indi-
vidual and group processes. In each case, dynamics must
be filled with content, with key variables and parameters
obtained for the systems under study. A beauty about co-
ordination dynamics is that the coordination variables or
order parameters are semantic, relational quantities that

“enfold” different aspects together thereby reducing often
arbitrary divisions. Every system is different, but what we
learn about one may aid in understanding another. What
may be most important of all is to see animated living
things in the light of a theory – coordination dynamics –
that embraces both spontaneous self-organizing and di-
rected processes, the complementary nature.
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