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The dynamics of learning a new coordinated behavior was examined by requiring participants
to perform a visually specified phase relationship between the hands. Results showed that
learning may involve qualitative or quantitative alterations in the layout of the coordination
dynamics depending on whether such dynamics are bistable or multistable before exposure to
the learning task. In both cases, the process stabilized the to-be-learned behavior and its
symmetry partner, even though the latter had not actually been practiced. Kinematic analyses
of hand motion showed that previously existing coordination tendencies were exploited during
learning in order to match visual requirements. These findings and the concepts presented here
provide a framework for understanding how learning occurs in the context of previous
experience and allow individual differences in learning to be tackled explicitly.

Biological constraints (e.g., Holies, 1970; Garcia &

Garcia, 1985), or behavior systems (Germana, 1989; Timber-

lake, 1993), approaches, consistent with general precepts of

ethology (e.g., Lorenz, 1970; von Frisch, 1967), emphasize

that all learning occurs as a modification of existing

structures and processes. Lawful accounts of what is learned

and how learning occurs must then address two chief issues:

First, the initial state of the learner before learning needs to

be evaluated. Second, it is necessary to determine how this

state is modified during the learning process itself. Although

the idea that learning (and development, cf. Sporns &

Edelman, 1993) somehow involves a modification of the

current behavioral repertoire of an individual appears intui-

tive, the actual operationalization of this notion within a

self-contained description is extremely difficult. In this

article, we approach these problems using the conceptual

framework of self-organization in nonlinear dynamical

systems (e.g., Beek & van Wieringen, 1994; Haken, Kelso,

& Bunz, 1985; Kelso, 1984; Kelso & Schdner, 1987;

Schdner & Kelso, 1988a, 1988b; Thelen, Kelso, & Fogel,

1987; Turvey, 1990).

In recent years, several researchers have examined the

issue of perceptuomotor learning from a dynamical perspec-

tive (e.g., Beek & van Santvoord, 1992; Saltzman & Munhall,
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1992; Schmidt, Treffner, Shaw, & Turvey, 1992; Swinnen,

Walter, Lee, & Semen, 1993; Vereijken, Whiting, & Beek,

1992) without, however, providing any operational or for-

mal treatment of individual spontaneous coordination tenden-

cies that may exist before, during, and after learning. Such

tendencies likely influence the learner's ability to perform

the required task at any moment during practice. In particu-

lar, they determine how well environmental task require-

ments are matched when the learner is first exposed to the

learning situation.

Knowledge of coordination tendencies that exist before

learning is important in several respects. First, to understand

learning as a process (as dynamics, we would say), it is

mandatory that subjects practice a behavioral pattern that

they have not mastered already. Otherwise, the task would

involve recognition and recall, but not learning per se.

Second, individual differences in learning a task are likely

related in some fashion to an individual's history and past

experiences. A usual provision taken to avoid putative

effects attributable to individual differences is to simply

cancel them out by setting as arbitrary a learning task as

possible. Despite this procedure, one may still question the

validity of the resulting learning curve obtained in terms of

its shape and time scale after data have been pooled across

subjects. Thud, knowledge of what participants are not able

to perform before practice is crucial to the issue of transfer

of learning. Again, transfer tasks, like the learning task itself,

are commonly set in a rather arbitrary fashion, with transfer

being assessed in terms of the amount or percentage of

transfer across tasks. In contrast, when the task space is

known for each individual before exposure to the learning

task, insight may be gained into why some tasks are

transferable and others are not.

A strength of our approach to learning (Kelso, 1990),

which blends experimental (Zanone & Kelso, 1992a, 1992b)

and theoretical work (SchSner, 1989; Schoner & Kelso,

1988a, 1988b; Schoner, Zanone, & Kelso, 1992; Zanone &

Kelso, 1994), is that it provides concepts and methods that
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explicitly treat existing coordination tendencies' and then-
evolution before, during, and after learning. Thus, not only

can learning be identified in terms of improvement in
performance toward some criterion level, which is the usual
case in learning experiments, but learning can also be
assessed directly as alterations of extant coordination tenden-

cies in the direction of the task to be learned. Coordination
tendencies are thus treated in terms of dynamics (i.e., as
equations of motion of a relevant collective variable that

changes during the learning process). Because this collective
variable expresses the ongoing interaction between the
numerous neural, muscular, and metabolic elements in-

volved in perception and action, we refer to its time-

dependent behavior as coordination dynamics (Kelso, 1994a;
Zanone & Kelso, 1994). Environmental requirements, such
as the learning task, are expressed as specific parameters on
these dynamics. Thus, the learning requirement and what the

learner brings into the learning situation (viz. individual
coordination tendencies) are captured within the same
description. Finally, although the unit of analysis is the
individual, each with his or her own signature (i.e., initial
coordination tendencies), laws of learning are expressed in
terms of generic mechanisms (e.g., stability, instability,
competition, cooperation, etc.) that are deemed to underlie

learning in all individuals.
The backbone of our approach is a systematic probe of the

individual's spontaneous coordination tendencies while the
to-be-learned task is practiced. The foundation for such

probes lies in the interplay of the task requirement and the
individual preferred coordination modes (Schoner & Kelso,
1988a, 1988b). Theoretically, when the task requirement
corresponds to an existing coordination tendency, a coopera-
tive mechanism stabilizes the performed pattern at the
required value. Alternatively, when the task requirement
differs from spontaneous tendencies, a competitive mecha-
nism may induce loss of stability (seen as enhanced variabil-
ity of the collective variable) and/or attraction of the
performed pattern to an underlying coordination tendency
(seen as a systematic bias of the collective variable toward a
specific value). Importantly, the relative roles of competition
and cooperation can be assessed in terms of subjects'
responses to experimental procedures that probe a large
range of task requirements, thereby scanning the space of the
collective variable.

Our window into the topic of learning is bimanual
coordination. Extensive experimental (e.g., Byblow, Carson,
& Goodman, 1994; Kelso, 1984; Kelso, Scholz, & Schoner,
1986; Scholz & Kelso, 1989; Scholz, Kelso, & Schoner,
1987; Walter & Swinnen, 1992) and theoretical work
(Haken et al., 1985; Schoner, Haken, & Kelso, 1986) has
shown that spontaneous coordination tendencies of the

bimanual system are captured by the dynamics of the
relative phase (<)>) between the relevant components at this
level of description, the fingers. These coordination dynam-
ics are bistable at <j> = 0° and <)> = 180°, giving rise to stable
in-phase or anti-phase motion of the components. Thus, to
study learning a logical first step is to impose a learning task
that differs from these already-existing attractive states of
the coordination dynamics.

Recently, we carried out such an experiment (Zanone &
Kelso, 1992a) in which the learning task was a 90° relative
phase specified by a visual model. This task was set halfway
between the initially assessed in-phase and anti-phase stable
coordination modes. By systematically evaluating coordina-
tion tendencies during the entire practice period and in a
recall session, we found that learning a specific bimanual
pattern involved not only improved performance in the
learning task itself (the usual outcome) but also long-lasting
alterations of the underlying coordination dynamics. In
particular, the learned pattern was stabilized, becoming an
attractive state of the coordination dynamics "in between"
the already existing stable states at 0° and 180°. Such
modifications represent qualitative changes hi the attractor
layout defined by the coordination dynamics, so-called
bifurcations or phase transitions,1 in which attractive states
are formed anew or previously attractive states vanish.
When the to-be-learned pattern is incorporated into the
coordination dynamics, any competition between the task
and initial tendencies is resolved.

In the present study we address three issues regarding the
dynamics of learning, motivated in part by our previous
work (Zanone & Kelso, 1992a): task novelty, transfer of
learning, and component dynamics.

Task Novelty

As noted earlier, the task to be learned in our previous
study (90°) was set midway between the bistable coordina-
tion states of in-phase and anti-phase. Strictly speaking, this
pattern might not have been entirely new for all subjects. To
understand how competition between the learning task and
existing coordination tendencies eventually leads to changes
in the underlying coordination dynamics (viz. learning), it is
necessary that the pattern to be learned constitute a novel
task for the learner. A feature of the current experiment was
that the learning task was set on an individual basis such that
it did not conform to any already-existing coordination
tendency. As we show, this procedure reveals new processes
and paths to learning.

Transfer of Learning

In our previous study (Zanone & Kelso, 1992a), only the
0-180° interval was probed before learning, spanning

' Spontaneous coordination tendencies have been called intrinsic

dynamics (Kelso, Scholz, & Schoner, 1988; Schoner & Kelso,

1988a, 198Sb) to conceptually differentiate those tendencies from

"extrinsic" influences that may be specified by memory, by

intention, or by the environment, which were captured as "behav-

ioral information." In this article, we do not use the term intrinsic

dynamics in order to avoid unfortunate connotations with con-

straints that are innate, hardwired, permanent, and rigid and to

emphasize the informational nature of coordination dynamics (for

further discussion and analysis, see Kelso, 1994b).
2 Mathematicians typically call such phenomena bifurcations,

whereas physicists tend to retain the term phase transitions because

critical phenomena accompanying transitions, such as fluctuations,

are treated explicitly. Here, we use these expressions interchangeably.
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the 90° relative phase to be learned. To rigorously test the
hypothesis that learning influences the entire layout of the
coordination dynamics, we carried out probes between 0°
and 360°, that is, over the entire range of possible lead-lag
relationships between the components. By so probing the
entire task or workspace (e.g., Fowler & Turvey, 1978;
Newell & McDonald, 1992; Saltzman & Kelso, 1987), it
should be possible for us to detect whether phasing patterns
other than that actually practiced stabilize spontaneously
with learning. From a theoretical point of view, the question
may be rephrased as to whether the initial symmetry of the
coordination dynamics, in which in-phase and anti-phase are
sole attractive states, is preserved when another, new
phasing pattern is learned, stipulating a given lead-lag
relationship between the components. At an epistemological
level, the occurrence of transfer of learning poses the
question of what is actually learned, that is, how abstract or
effector-independent the learned phasing pattern is. As we
shall show, our results suggest that learning may occur
independent of the temporal ordering (i.e., the lead-lag
relationship) between the components.

Component Dynamics

According to the theory of coordination dynamics, a
complete understanding of a given phenomenon requires at
least three levels of description: the task or goal level; the
coordinative, collective variable level; and the component
level (Kelso, 1994a; Zanone & Kelso, 1991). One of us
(Kelso, 1995) has referred to this as the "tripartite scheme"
for understanding complex biological systems. For example,
in the case of interlimb coordination, the task may be to
move the limbs rhythmically out of phase with each other,
the collective variable is the relative phase that characterizes
emerging patterns, and the components are conceived of as
nonlinear oscillators. This is not, of course, a rigid picture.
Mutability exists among levels. Thus, a component level
defined in terms of nonlinear oscillators may be viewed as a
collective variable for finer grained distinctions such as
agonist-antagonist muscle activity.

Nevertheless, in our work so far, the learning process has
been clarified only in terms of the dynamics of the collective
variable relative phase. It is therefore relevant to inquire how
the individual coordinating components adjust to satisfy
learning task requirements. Thus, we describe how the initial
competition between task demands and individual compo-
nent dynamics is overcome through observed changes in the
component kinematics. Briefly, we identify different "strate-
gies" that incorporate preexisting coordination tendencies
into new, learned kinematic assemblages between the com-
ponents and show that such strategies defined at the compo-
nent level pertain to the relative strength that these tenden-
cies exhibit at the level of the collective variable dynamics
before exposure to the task.

Method

The method was identical to that used in the previous study by

Zanone and Kelso (1992a) unless stated otherwise. The experiment

was carried out on 2 consecutive days. On the first day, after

informal familiarization with the task and the experimental setup,

initial coordination tendencies were probed for each subject

between 0° and 360". No knowledge of results (KR) was provided

to subjects during these probes. The to-be-leamed pattern was then

set on an individual basis such that it did not correspond to a

spontaneously stable pattern. This new pattern was then practiced

for 20 trials, with KR given at the end of each trial. On die second

day, the coordination tendencies were first evaluated within 0° to

180° or 0° to -180°, whichever encompassed the practiced

phasing pattern. This allowed us to assess any early changes in the

coordination dynamics with learning while avoiding any experi-

ence of the symmetry partner of the relative phase that was

practiced. Thirty additional practice trials of the to-be-learned

phasing pattern were then administered. At the end of the training

period, a full probe (i.e., 0-360°) of the coordination dynamics was

again carried out.

Subjects

Fourteen subjects (mean age = 26.8 years) were paid to partici-

pate in the experiment. The only prerequisite was that no visual or

physical impairment impeded perceiving or producing the required

phasing pattern. Four subjects were self-professed left-handers.

Apparatus

Subjects were seated in front of a "visual metronome" com-

posed of two LEDs that displayed the required relative phase at a

constant frequency of 1.25 Hz. Subjects' hands were slipped into a

bimanual apparatus that allowed monitoring of flexion-extension

movements of the index fingers in the horizontal plane, so that

flexion corresponded to motion toward the body midline. Signals

from the visual metronome and the bimanual apparatus were

digitized in real time at a sampling rate of 200 Hz per channel. KR,'

when appropriate, was given to the subject on a computer screen

located beside the visual metronome (for details, see Zanone &

Kelso, 1992a).

Task

Subjects were instructed to produce the required phasing pattern

specified by the metronome as precisely as possible using appropri-

ate finger movements. Specifically, subjects were required to attain

exact synchronization of maximal finger flexion with the onset of

the ipsilateral LED. Otherwise, individual movement kinematics

were free to vary. Thus, the goal was to induce 1:1 frequency and

phase entrainment.

Procedure

Full (i.e., 0-360°) probes of the coordination dynamics were

carried out in two runs, each of which investigated the set of

right-lead or left-lead phasing patterns. In each run, the required

relative phase was systematically scanned from the starting value

of 0-360° to the final value of ±180°. Practically, the metronome

LEDs were first blinking simultaneously; then, by increasing the

3 Knowledge of results was given on a screen displaying the time

series of the actual finger excursions and that of the relative phase

produced during a practice trial, along with various descriptive

statistics about phasing and synchronization performance over a

trial (for details, see Figure 3 in Zanone & Kelso, 1992a).
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time delay between them, the LEDs were eventually blinking

alternately. Accordingly, the fingers had initially to move similarly,

both flexing and extending synchronously, whereas they had finally

to move hi opposite directions, one finger flexing while the other

was extending. During such scanning runs, the required relative

phase was varied every 15 s in 12 discrete steps of 15° or -15°,

respectively. In other words, a scanning run was composed of 13

successive plateaus during which the required phasing was held

constant at a different value. For each subject, the first run of the

full probe always scanned the set of relative phases with the same

lead-lag relationship as the task to be learned. No KR was provided

during or after scanning runs.

A typical practice trial lasted 20 s and was followed immediately

by KR. Practice was administered in consecutive blocks of 10

trials, with an average intertrial interval of about 15 s and an

interblock interval of about 1 min. Note that 10 trials here actually

corresponded to 250 attempts to produce the required phasing

pattern. The relative phase pattern to be learned was chosen

according to the results of the initial full probe under the caveat that

to be novel, such a pattern should not coincide with an already-

existing coordination tendency (see Figure 1 for an operational

description of how to determine attractive states from the results of

the probes).

Two Measures of Relative Phase

As a matter of convention, we always defined relative phase with

reference to right-hand events. Thus, metronome and finger

patterns in which the right event led with respect to the left were

attributed a positive relative phase (i.e., ranging from 0° to 180°).

Conversely, left-lead phasing patterns had negative values varying

between 0° and —180° or, equivalency, positive values between

360° and 180°. Two measures of relative phase were used

depending on the collective versus component level of description

(see the middle panels of Figures 5-7 for an illustration). Conso-

nant with the discrete task requirement, a first measure of the

produced pattern, 4>, was a point estimate of the relative phase

between finger movements. The time difference between the

occurrence of maximal flexion of the left finger and that of the right

finger closest in time was expressed (in degrees) relative to the

period of the corresponding right finger cycle (for details, see

Zanone & Kelso, 1992a). Typically, maximal flexion was deter-

mined with software for every movement cycle as the movement at

which the point of peak flexion was first reached within a given

noise criterion level. Thus, if some rest period existed at such a

point (e.g., see the bottom panels of Figures 6 or 7, presented later),

the left edge of the flat trajectory segment was picked. This

point-estimate measure was used to characterize behavior at the

collective level of the coordination dynamics. For the component

level, that of the kinematics of the individual finger motion, we

used a second measure, the continuous relative phase. Its computa-

tion used the foregoing points of maximal flexion to normalize

performed trajectories in amplitude and time to unity for each

cycle. Thus, a phase angle (i.e., the angle formed by velocity and

position on a phase plane) was calculated for each sample in both

time series, the difference of which yielded the relative phase (see

Kelso et al., 1986, for details). It must be emphasized from the

outset that although the point-estimate and continuous relative

phases suggest different behaviors is terms of stability, both

measures are perfectly equivalent for capturing the system's

underlying coordination dynamics (for an experimental, method-

ological, and theoretical discussion, see the Results and Discussion

section and the Appendix).

Results and Discussion

The results are presented in five sections. In the first three

sections we deal with our main hypotheses that learning and

transfer lead to changes in the entire layout of the coordina-

tion dynamics and address the nature of these changes. In the

fourth section we provide a closer look at the individual fin-

ger movement kinematics to see how these are modified with

learning and how coordination requirements imposed by the

task are actually achieved at both the collective and compo-

nent levels. This provides a coherent and finer grained pic-

ture using the continuous measure of relative phase to evalu-

ate how new coordination patterns are learned and realized

(see also the Appendix for a theoretical treatment). In the

final section we establish the linkage between the collective

and component levels as they relate to the learning process.

The cornerstone of our approach to learning is to set the

learning task on an individual basis according to each sub-

ject's coordination capabilities that exist before exposure to

the task. In probes of the individual coordination dynamics

carried out before practice, 10 subjects exhibited stable be-

havior at 0° and 180°. These subjects were then assigned to

two groups of five who practiced either 90° or 270° (-90°),

respectively. Two subjects with multistable coordination

dynamics at 0°, 180°, and ±90° practiced either 135° or

-135° (225°). A third subject exhibited initial multistability

at 0°, 180°, and ±60°. For her, the to-be-learned relative

phase was arbitrarily set at 90° of relative phase. Finally, the

last subject exhibited initial stability at 0°, 180°, and ±135°.

The learning task was men set at -90° (or 270°) relative phase.4

Probes of the Collective Variable Dynamics

Figures 1A and IB show the results of the three probes

carried out during the learning procedure for initially

bistable coordination dynamics, that is, for subjects who

practiced 90° or 270°, respectively. In each panel, top curves

display the mean error of the produced relative phase5 as a

function of the relative phase required in each plateau, and

the bottom curves plot the corresponding within-plateau

standard deviation. For the first (leftmost) and last (right-

most) probes, which spanned the full range between 0° and

360°, the two runs scanning the right-lead and left-lead

patterns separately are juxtaposed graphically. Thus, the

scores for ±180° (actually the same phasing value) are

drawn slightly apart, whereas 0° and 360° constitute both

"ends" of the curves, although they represent the same

requirement and should be glued together mentally. Note

that the first probe on the second day scanned only the set of

relative phases having the same lead-lag relationship as that

"The skewed population exhibiting multistable dynamics

stemmed from our prerequisite of obtaining an equal number of

individuals with bistable dynamics to test our main hypotheses.

Intervening cases of multistable dynamics were analyzed as they

occurred without reaching an equal population. The general
picture, however, was remarkably coherent across all multistable

cases in spite of such individual differences.
5 Remember that in all of the sections on the collective variable

dynamics, we used a point estimate of relative phase.



Learning task: 90 deg

270 360 0 90 180 0 90 1BO 270

Required relative phase (deg)

Learning task: 270 deg

270 360 180 270 310 0 90

Required relative phase (deg)
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Figure 1. Probes of the collective dynamics before, during, and after learning for initially bistable

dynamics. A: The results for the 5 subjects who practiced 90°. In the prelearaing probe, the data for 4

subjects are pooled together, and 1 is singled out (denoted by asterisks). The top, solid curves display
the average error in performed relative phase as a function of the required relative phase. The bottom,

dashed curves represent the corresponding within-plateau standard deviations. Vertical bars denote

between-subjects standard deviations if applicable. B: The results for the 5 subjects who practiced

270°. The legend is the same as for A, except for a change in the left ordinate. Zero crossing of the

error curve with a negative slope and low standard deviation are indicative of an attractive state of the
underlying coordination dynamics. Comparison of A and B shows that learning and transfer of
learning lead to a bifurcation establishing new attractive states (denoted by arrows) at the practiced

pattern and its nonpracticed symmetry partner.
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of the practiced pattern. Because two types of behavior were

observed in both learning groups before learning, the error
scores (top left graph) of 4 subjects exhibiting comparable
performance were collapsed together, with the mean value
being displayed along with the ±1 between-subjects stan-
dard deviation (vertical bars). Individual error scores for the
one remaining subject in each group are represented by the
asterisk curve for the sake of demonstration. The correspond-
ing within-plateau standard deviation (bottom left graph) is
not singled out, however, in order to avoid unnecessary
clutter in the figure.

Consider first the results of the initial probe for most
subjects who practiced 90° of relative phase (curves with a
vertical bar in Figure 1A). The mean error (top curve) was
minimal for phasing requirements of 0° and 180°, whereas it
was substantially larger for other required relative phases.
More precisely, when a pattern different from 0° (or 360°)
was required, the error was roughly proportional to the
difference between the actual requirement and 180°, exhibit-
ing a negative slope near 180° where it crosses the abscissa.
This means that over a large span of phasing requirements
different from 0°, the performed pattern was systematically
biased toward 180°. Concerning performance variability, the
lower curves show that the within-plateau standard deviation
was smallest for phasing requirements of 0° and 180°, more
so for the former than the latter. Such stability of the 0° and
180° patterns relative to intermediate values is also reflected
by the lowest between-subject variability in both scores
(vertical bars). This initial picture suggests bistable coordina-
tion dynamics characterized by attraction to in-phase and
anti-phase. Notwithstanding an altogether different behavior
during the probe, this conclusion also held true for the
remaining individual (the asterisk curves in Figure 1A). The
negative slopes about 0° and 360° reflect strong attraction to
the in-phase pattern, until performance eventually switches
to 180° at about ± 150° of required relative phase, indicating
attraction to the anti-phase pattern.

A comparable pattern of results was observed for subjects
who practiced 270° of relative phase (the leftmost curves of
Figure IB). For the 4 subjects pooled together, the top curve
is closer to zero at 0° and 180° and exhibits a typical
negative slope around 180°, while the bottom graph shows
that performance variability is smallest for both phasing
requirements. Thus, as soon as the task no longer required
the 0° phase relationship, the produced pattern appeared to
be pulled toward 180° of relative phase to a large degree
regardless of the actual requirement. A similar disregard for
the task requirement in the intermediate range was also
observed for the individual represented by the asterisk
curves. Performed relative phase was strongly attracted to
in-phase, before switching to anti-phase for the last two
phasing requirements. Thus, both behaviors illustrated in
Figure IB suggest underlying coordination dynamics that
are basically stable at in-phase and anti-phase, with the only
difference being the plateau at which switching from in-
phase to anti-phase actually occurred.

Note that when there is strong attraction to an underlying
coordination tendency in spite of the task requirement,
variability may well be low because what is actually

performed is a stable, preferred phasing pattern. Meanwhile,
however, the actual performance error may be large. An

example is provided in Figure IB, where the standard
deviation curve (bottom) for the first probe between 30° and
180° is fairly low because all subjects consistently per-

formed either 0° or 180°, one of the stable patterns of the
underlying coordination dynamics. This large mismatch

gives rise to the negative slope in the error curves (top).
Conversely, the mean error may be close to zero because of
averaging across a range of phasing scores that reflect the
subject's unsuccessful attempts to perform the task. How-

ever, variability, both within and across subjects, is then
large. Thus, when competition arose between task require-
ments and preferred coordination patterns, there was a
trade-off between the mismatch error and the variability of
performance. Both measures must therefore be considered
simultaneously to assess the situation correctly.

In summary, the similarity between the left graphs of
Figure 1A and IB leads to a common conclusion: Initial
probes for all subjects indicated that the underlying coordina-
tion dynamics were bistable at 0° and 180° before exposure
to the learning task. This, of course, is the reason why these
subjects practiced either the 90° or 270° phasing pattern.
Theoretically, the latter relative phases constitute unstable
fixed points or repellers of the underlying coordination
dynamics. As seen in Figure 1, it is around these unstable
states that the error and the variability culminate, giving rise
to the characteristic tilde-like curve for the error and
double-humped curve for the standard deviation. Thus, both
shapes, because of the nature of the variables, reflect a
certain symmetry in the bistable coordination dynamics
exhibited before practice.

How, then, was the putative coordination dynamics af-
fected by 2 days of practice? Consider the rightmost graphs
of Figure 1 A, which show the results of the final probe for all
5 subjects who practiced the 90° pattern. For the error in
relative phase (top graph), the scores are near zero at 0° and

180° and there is a negative slope around the 180° pattern,
which is similar to the situation before learning (cf. leftmost
curves). Stability measures (lower graphs) indicate that the
0° pattern was less variable than the 180° pattern, although
both were more stable than most intermediate values. The
main novelty of the final probe was that the error curve
showed a negative slope and the standard deviation was low
around the practiced pattern of 90° as well as 270°,
suggesting that these patterns had become attractive states of
the coordination dynamics. Such a tendency also was
confirmed by the low between-subject variability for these
phasing requirements. Thus, the coordination dynamics after
learning is multistable at 0°, 90°, 180°, and 270° and is again
quite symmetrical in nature. For the subjects who practiced
270°, the rightmost graphs of Figure IB reveal a similar
pattern of results. Negative slopes and low standard devia-
tions around 0°, 90°, 180°, and 270° suggest that these
patterns constituted attractive states of the coordination
dynamics after learning. Moreover, the curves in both
figures were reasonably symmetrical.

Comparison of initial and final probes (cf. left- and
rightmost graphs of Figures 1A and IB, respectively) for



1460 ZANONE AND KELSO

subjects with bistable coordination tendencies before learn-
ing yielded consistent findings. Whatever its actual value,
the to-be-leamed pattern became an attractive state of the
coordination dynamics with practice. Concomitantly, the
symmetry partner of the to-be-learned pattern became an
attractive state as well, although such a pattern was not
practiced at all. Such automatic stabilization of a nonprac-

ticed pattern is unmistakable evidence of transfer of learn-

ing. Thus, for subjects who practiced ±90°, the entire
process of learning and transfer led to a qualitative alteration
of the coordination dynamics from an initially bistable to
multistable regime. A fascinating outcome of this bifurcation

or phase transition is that it appears to preserve the original
symmetry of the coordination dynamics.

We confirmed the foregoing pattern of results statistically
by comparing the 0°, ±90°, and 180° patterns in each
individual scanning run (i.e., half of a complete probe
covering the right- vs. left-lead patterns) across practice
days and learning tasks (i.e., 90° vs. -90°). In the subse-

quent analyses, we used the absolute mean error in relative
phase as a measure of accuracy. One reason for choosing this
measure was to cancel out behavioral differences among
subjects regarding when they switched from 0° to 180°

during a scanning run. A second reason was to eliminate the
differences attributable to the signed error associated with
attraction to a given phasing pattern. Two 2 X 2 X 2 X 3
analyses of variance (ANOVAs; Task X Day X Run X
Pattern) with repeated measures on the last three factors
were carried out for both dependent variables, namely, the
mean and standard deviation of the absolute error in relative
phase. For the mean error, the main effects of day, F(l, 8) =
6.35, p < .04, and pattern, F(2, 16) = 10.88, p < .01, were
significant, as was their interaction, F(2, 16) = 10.57, p <

.01. This analysis led to three conclusions: First, the
interaction confirmed that, beyond the overall and trivial
differences between patterns and days, learning did not
affect all phasing patterns equally. Second, the lack of
significance of the run effect or any of its interactions
reflected the persistence of the symmetry between left-lead
and right-lead scanning runs. Finally, because the effects of
the learning task and its interactions were not significant,
these conclusions are true regardless of which relative phase
was practiced. An a priori contrast analysis of the day effect
distinguished the 0° and the 180° patterns from the 90° and
270° patterns, Fs(l, 8) = 11.36-33.13, ps < 01, but did not
differentiate the 0° and 180° patterns or ±90° from each
other. In summary, statistical treatment of phasing error
confirmed quantitatively the observations illustrated in Fig-
ures 1A and IB (top graphs), that is, the emergence of a zero
crossing at 90° and 270° with learning, thereby reflecting
qualitative change (from a bistable to multistable regime) in
the evolving coordination dynamics.

The same analyses were conducted on the mean within-
plateau standard deviation. A Task X Day X Run X Pattern
ANOVA revealed that the main effects of day, F(l, 9) =
13.33, p < .01, and pattern, F(2,16) = 16.38, p < .01, and
their interaction, F(2,16) = 4.32, p < .03, were significant.
In addition, the Day X Run interaction was significant, F(l,
8) = 7.32, p < .03, as well as the Day X Pattern X Run

interaction, F(2, 16) = 4.69, p < .03. The Day x Pattern
interaction indicated that the 90° and 270° patterns under-
went a substantial decrease in variability with learning,
whereas the 0° and 180° patterns remained essentially the
same. However, the three-way interaction indicated that the
180° pattern was not as stable in both runs. In fact, the
standard deviation in the second run of the probe (i.e., with a
lead-lag relationship other than the practiced pattern) ap-
peared to be generally larger than in the first run, a fact that
was at the origin of die Day X Run interaction. In brief, like
the foregoing error data, these statistical analyses of the
standard deviation of relative phase strongly suggest that the
practiced pattern and its symmetry partner become more
stable with learning. Overall, the analyses on the error and
variability of performance as a function of the required
relative phase indicate that the to-be-learned pattern stabi-
lizes with learning and that learning a specific phasing is
automatically transferred to its symmetrical partner.

The take-home message concerning the evolution of
bistable attractor layouts with learning a new phasing pattern
is that the practiced pattern and its symmetry partner do
indeed stabilize and become attractive states of the underly-
ing coordination dynamics. These findings unequivocally
support our hypothesis that learning involves a phase
transition. Moreover, they indicate that the symmetry of the
underlying coordination dynamics is preserved by the auto-
matic transfer of learning.

Practice Trials

A general picture of the evolution of task performance
with practice is provided in Figure 2. Figures 2A and 2B
show data for subjects who learned the 90° or 270° patterns,
respectively. The scores connected by a line represent the
practice trials, and the scores drawn slightly apart with
horizontal tickmarks represent the plateau of the three
probes in which the to-be-learned relative phase was actu-
ally required. The upper curves represent the absolute mean
error in relative phase for a trial (or a plateau) collapsed
across subjects. The lower curves show die corresponding
within-trial (or within-plateau) standard deviation. For all
curves, vertical bars indicate the variability across subjects,
encompassing ± 1 SD. The 50 scores are graphically sepa-
rated according to the day of training, although the trial
numbering is continuous for graphical purposes.

First, we focus on the practice trials (connected scores).
The graphs displayed in Figures 2A and 2B present several
characteristic features of classical "learning curves." As the
practice of the 90° or 270° phasing pattern proceeded, the
absolute error (upper solid curves) diminished substantially
from an initial value of 54.90° to that of 8.42°, on average.6

Likewise, performance variability decreased from an aver-
age value of 29.95° to 13.00°. For both scores, between-trial
fluctuations and between-subject variability (denoted by the

6 An individual breakdown of the scores on the first trial showed

undershoot and overshoot of the required phasing pattern by at

least ±30°. This also reflected an overall attraction to in-phase or

anti-phase before learning.
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Figure 2. Evolution of performance in the practice trials for subjects who practiced 90° (A) or 270°
(B). The top, solid curves show the average absolute (Abs.) mean error in performed relative (rel.)
phase as a function of the trial number. The bottom, dashed curves plot die corresponding within-trial
standard deviations. For the sake of comparison, performance on the plateaus in which the
to-be-learned phasing pattern was required during the three probes is plotted slightly apart Vertical
bars denote between-subjects standard deviations. Both panels represent "typical learning curves."
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vertical bars) also declined markedly. Thus, consistent with
a minimal definition of learning, practice substantially
improved performance toward the criterion level.

Regarding the plateaus of each probe in which the
to-be-learned pattern was required (disconnected scores),
the decrease in the absolute error and variability of the
produced relative phase, including between-subject variabil-
ity, was noticeable and appeared to be quantitatively similar
to that observed in the practice trials. Moreover, the evolu-
tion of performance in the learning task and the evolution of
the underlying coordination dynamics assessed using the
scanning probes were compatible timewise. From the data of
Figure 1, it appears that the intermediate probe carried out
during learning revealed a substantial stabilization of the
to-be-learned pattern. Accordingly, a steep performance
improvement was observed during the first trials of the
second day (i.e., between Trials 20 and 25), such that the
final level of performance was almost achieved (see Figure
2). Together, these findings provide evidence that both the
learning and scanning tasks were tapping into the same basic
coordination dynamics.

An essential finding of this study is that not only did the
trained pattern stabilize with learning but, simultaneously,
its symmetry partner did as well. Among the total number of
500 practice trials performed by the subjects, 11 exhibited
spontaneous switching between a given relative phase and
its inverse (e.g., from 90° to 270°). Two examples are
provided in Figure 3. The top window in Figures 3 A and 3B
plots the cycle-by-cycle point estimate of relative phase as a
function of time. Note that the ordinate covers the range
from —360° to 360°, so that each data point is plotted twice
for ease of visualization. The bottom window displays the
time series of the finger motion, with the solid line represent-
ing angular displacement of the right finger and the dashed
line the left finger. Upward movement of the lines corre-
sponds to finger flexion, so that tick marks denote the
moment of peak flexion of both fingers.

Figures 3A and 3B show examples of practice trials
for 2 subjects who practiced 90° or 270°, respectively. Both
show steep and successive jumps, back and forth, between
relative phase values centered about 90° and about 270°
(denoted by the arrows), regardless of the actual require-
ment. Such switching was sudden relative to the intervening
epochs of stable behavior and could not be attributed to a
gradual change or shift hi relative phase. These data sug-
gest that at this point in their evolution, the underlying
coordination dynamics are actually multistable, with both
the to-be-learned and the symmetrical patterns qualifying
as attractive states of roughly equal strength. This hypothe-
sis appears reasonable because all trials exhibiting spon-
taneous switches occurred after 10, but before 25, practice
trials were completed, that is, after enough practice had
been provided to stabilize both patterns. Indeed, the scan-
ning probe closest in time (i.e., at the beginning of the 2nd
day; see the half scans carried out during practice in Fig-
ure 1) already revealed the presence of attractive states at
90° or 270°.

Other Routes to Learning

We now discuss the 4 subjects who, by virtue of the initial
scanning probes, exhibited coordination dynamics in which
patterns other than 0° and 180° were attractive states before
exposure to the learning task. Figure 4 shows the evolution
of these initially multistable dynamics with learning on an
individual basis. For each subject, the general layout of
Figures 4A-4D is the same as that of Figure 1. The top
graphs plot the average error in relative phase for each
plateau, and the bottom graphs display the corresponding
variability. Left- and rightmost curves represent the com-
plete probes carried out before and after practice; the middle
curves represent the half probe conducted at the beginning
of the second day of practice. A difference is, of course, the
absence of vertical bars denoting between-subject variabil-
ity. A second difference is the addition of the linear
regression (dashed line) computed over the entire span7 of
each negative slope of the error. Such linear trends help
quantify the attraction of the underlying stable states of the
coordination dynamics, in that it affords a better, statistically
grounded estimation of the point zero crossing. For all
negative slopes, the linear regressions were significant
(R > -.85).

Figures 4A and 4B show the data of 2 subjects whose
coordination dynamics were initially stable about the ±90°
relative phases. The leftmost pair of curves exhibit negative
slopes and zero crossings of the error (top curve) close to
these values, as denoted by the linear regressions (dashed
lines) that cross the abscissa within a ± 15° interval around
90° or 270°. Moreover, there is reduced variability (bottom
curve) around these values.8 Recall that negative slope and
low variability are signature features of attractive states.

The final coordination dynamics (rightmost curves) show
signs of attraction to ± 135°, as reflected by the clear shift of
the regression (dashed) lines toward these values. Actually,
the zero crossings of the error curves occur, in both cases, at
150° and 135°. At the same time, the variability is relatively
low. This pattern of results again suggests that both the
to-be-learned pattern and its symmetry partner stabilized,
even though only the former was practiced. Thus, in keeping
with results concerning bistable initial dynamics (cf. the
section on probes of the collective variable dynamics),
learning a novel relative phase transfers automatically, in
such a way that the symmetry of the coordination dynamics
is preserved.

It is important to note that the initially stable states at

7 The span of the negative slope was defined as the interval, on

each side of a zero crossing, within the phasing values associated

with the largest or smallest errors or those preceding another

crossing of the abscissa, whichever came first.
8 Because these are individual data, the pattern of results

regarding variability is less clear than the data collapsed across

subjects (cf. Figure 1). Nevertheless, the data indicate that the

closer to 90° the relative phase actually performed was (i.e.,

the sum of the required phasing and the mismatch), the smaller the

standard deviation became. Such a relationship still reflects the

differential effects expected from competitive or cooperative

mechanisms between preferred and required patterns.
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Figure 3. Examples of switching behavior in practice trials for 2 subjects who practiced 90° (A)

and 270° (B). In each panel, the top window plots a point estimate of the relative phase between

fingers, and the bottom window displays the actual excursions of the right (solid line) and left (dashed

line) ringers in the indicated directions. In both cases, successive bouts of stable performance

(denoted by arrows) correspond to executing almost exclusively the learned pattern and its symmetry

partner. Extens. = extension; A.U. = Arbitrary Units.

±90° are no longer present in the final probes. They have, as

it were, been "replaced" by the new ones corresponding to

the learning requirement and its symmetry partner. How-

ever, this does not mean that the underlying coordination

dynamics were altered qualitatively with learning because

such dynamics was and remained multistable (i.e., with four

attractive states) before and after practice. Rather, these

findings hint strongly at an alternative route to learning, the
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nature of change corresponding to the shift of an already-

existing attractor in the direction of the to-be-learned

pattern. Such a gradual shift was nicely captured "in flight"

by the intermediate, incomplete probe carried out during

learning at the beginning of the second day of practice. The

middle graphs of Figure 4A show that the zero crossing in

the mean and the minimum in the standard deviation have

already moved from the original relative phase of 90° to an

intermediate value of about 120°. Similarly, Figure 4B

indicates an equivalent shift in the direction to the task

requirement from 270° to about 240°. Regarding the other

half of parameter space not evaluated by the intermediate

probe, one has to assume that a similar process occurs for the

symmetry partners of these shifted attractive states because

they eventually drift to the symmetry partner of the required

patterns. Thus, a complete picture of the process presented in
Figures 4A and 4B is that both learning and transfer

gradually pull an existing pair of symmetrical attractive

states from their initial values toward the task requirement

and its symmetry partner.

Support for the foregoing scenario is boosted by the

results presented in Figures 4C and 4D. In Figure 4C, the

initial probe (leftmost curves) shows zero crossings of the

regression line at 60° and 285° in addition to the more usual

attraction to 0° and 180°. Roughly speaking, the underlying

coordination dynamics exhibited signs of attraction to a

symmetrical pair at ±60°. The to-be-learned pattern was

thus set at 135°, in the middle of the interval between

existing stable patterns. With practice, the 60° pattern

progressively moved toward the task requirement, with the

intermediate probe (middle curves) showing attraction to

105°. Finally (cf. rightmost curves), stable states are shown

at 135° and 210°, close to the learning requirement and its

symmetrical value (225°). The same dual process is illus-

trated in Figure 4D. Initially, attractive states appear near

135° and 205° (about ± 135°). With increasing practice of an

intermediate 270° pattern, a shift of the 205° attractor to the

to-be-learned phasing is observed, mirrored by a move of its

symmetry partner toward 90°.

General features of learning curves (i.e., decrease of the

performance error and variability with practice; see Figure 2

for an illustration) were again observed in these 4 subjects

(data not shown here). Note that the scores in the plateau of

the probes requiring the same phasing pattern as the learning

criterion are in keeping with these trends. Moreover, the

error score in the first practice trial was biased in the

direction of the nearby attractive state (i.e., 60° or 90°) for

all subjects. Again, this suggests that the practice task and

the probes are indeed tapping into the same underlying

coordination dynamics.

Component Dynamics

After analyzing the effects of learning this discrete timing

task at the coordinative level, expressed through a point

estimate of the collective variable, relative phase (4>X we

now consider events at the component level of description.

Basically, we scrutinize the actual motion of each finger

while the subject is involved in the task of learning a novel

relative timing pattern. Specifically, through kinematic analy-

sis, we investigate how individual finger motion is modified

by virtue of learning a novel coordinative task.

In the first practice trials, component kinematics appeared

to be characterized by a variety of behaviors across subjects

and task requirements. By and large, finger motion was jerky
(e.g., see Figure 3B) and the performed relative phase was

variable, reflecting more or less successful attempts to

produce a new phasing pattern. In contrast, the last practice

trials for subjects who practiced 90° or 270° revealed three

types of behavior in realizing the required relative phase.

Certainly at that time, the required pattern was learned,

given the stable and accurate performance in the practice

trials (see Figure 2) and the accompanying changes in the

collective variable dynamics (see Figure 1). Figures 5,6, and

7 show typical examples of successful performance during

one entire practice trial for 3 subjects who practiced 270°.

Later on, we show that these behaviors are representative of

the group as a whole (cf. Figures 9-11). Each figure is

composed of three windows. The bottom window plots the

time series of angular displacement of both fingers (in

arbitrary units). The middle window displays the relative

phase between them, both in terms of continuous (solid line)

and point-estimate measures (denoted by solid circles). The

top window shows the angular velocity time series of both

fingers. Solid and dashed lines represent the right and left

components, respectively. In the upper part of all windows,

the onset of the pacing signals is represented by tick marks.

Long and short tick marks refer to the left, leading, and right

lagging metronome signals, respectively.

The bottom window of Figure 5 shows two displacement

curves that are roughly similar to sinewaves of constant

amplitude, except that some flattening is observed about

Figure 4 (opposite). Probes of the collective dynamics before, during, and after learning for
initially multistable dynamics. Presented are individual data for participants who practiced 135° (A
and C), for 1 subject who practiced 225° (B), and 1 subject who practiced 270° (D). The top, solid
curves show the average error in performed relative phase as a function of the required relative phase.
The bottom, dashed curves represent the corresponding within-plateau standard deviations. Zero
crossing of the error curve with a negative slope (graphically enhanced by a linear regression carried
out over its span) and low standard deviation are indicative of an attractive state of toe underlying
coordination dynamics. The data in the four panels suggest that learning induces a shift of a
preexisting attractive state to the to-be-learned relative phase. Concomitantly, the transfer of learning
induces a mirroring shift of another preexisting attractive state to the nonpracticed, symmetry partner
of the learned pattern.
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extrema, especially extension. Accordingly, the velocity
curves (top window) are fairly regular and sinewave-like
too, albeit with noticeable plateaus about zero velocity. We
call such behavior the sinelike strategy. Were all these time
series almost pure sinewaves, continuous relative phase
would be close to 270° over the entire trial. In reality, its time
series (solid line in the middle window) appears rather
rough. In spite of this, two main features can be detected.
First, continuous relative phase evolves in an orderly fashion
over one cycle of finger motion with periodic spikes toward
0° (or 360°). These spikes correspond to the zero-velocity
plateau at peak extension (viz. valleys of the displacement
curves shown in bottom window). Second, between two
such spikes, continuous relative phase hovers around the
required value of 270° (dashed horizontal line), albeit with
some fluctuations caused by specific anharmonicities in the
kinematics of each finger. These epochs occur when the
fingers are both flexing toward or extending away from the
point of maximal flexion (peaks of the displacement curves
in the bottom window). Note that this is a direct conse-
quence of the discrete task requirement, which was to
synchronize maximal finger flexion with the onset of the
metronome signal. Indeed, peak flexion of the fingers
coincides fairly well with its respective metronome (cf. long
tick marks with dashed peaks and short tick marks with solid
peaks). Accordingly, the point wise relative phase (see the
solid circle) remains close to the required value over the
entire trial (M = 275.2°, SD = 10.5). Thus, Figure 5 nicely
captures the link between the individual component motions
and the relative phase, for both the continuous and point-
estimate measurements, showing how coordination emerges
from the interaction between the specific task requirement
and the individual components. In strict compliance with the
task demand, the components are tightly coordinated at
specific points in time (i.e., they are locked at the correct
relative phase), whereas they appear to be slightly less
coupled elsewhere during the cycle. This provides an a
posteriori confirmation of the pertinence of our point-
estimate measure at peak flexion for capturing the coordi-
nated behavior of the fingers in this task (and others). In
other words, such a point estimate is indeed a relevant
collective variable characterizing the underlying dynamics
(see also the Appendix).

Another interesting feature of Figure 5 is that fluctuations
of continuous relative phase as well as within-cycle pattern-
ing tend to diminish with time. Such smoothing of finger
motion is reflected, for instance, by increased regularity of
the velocity curves in the last cycles and decreasing length of
the zero-velocity plateaus (see the top window). This may
indicate the existence of a time scale along which both
individual components gradually recover from the perturba-
tion imposed by the task on then" natural tendency to exhibit
stable relative phase relationships at in-phase and anti-phase.

Another typical behavior is presented in Figure 6, in
which the two fingers also exhibit roughly comparable
kinematics. Displacement curves (bottom windows) are no
longer near-sinusoidal but instead exhibit sharp peaks (viz.,
rapid flexion-extension movements) and flat plateaus (viz.,
standby at extension). It follows that continuous relative

phase (solid line in the middle window) is not constant over
a cycle but that it periodically oscillates between approxi-
mately 90° and 0° (or 360°). The 0° (or 360°) value
corresponds to moments when both fingers are immobile at
maximal extension, hence remaining together in-phase. We
call the behavior shown in Figure 6 the in-phase strategy.
Notice that the continuous relative phase actually reaches
the required value of 270° (horizontal dotted line) twice per
cycle. This happens close to the occurrence of peak flexions,
that is, when both fingers must be synchronized with their
respective pacing signals to accomplish the task. In particu-
lar, the point-estimate relative phase calculated at peak
flexion (see the solid circles) reveals good performance
(M = 260.6°, SD = 13.1°). Here again, task constraints at
the collective level manifest themselves at the level of the
component dynamics. Consonant with the task requirement,
component motions come together appropriately at specific
points in their excursions, while tending to assume a more
basic coordinative pattern (i.e., in-phase) elsewhere. Essen-
tially, a mechanism comparable to the sinelike strategy
illustrated in Figure 5 also seems to operate here, except for
the reduced time and strength with which the phase coupling
to the required value operates. From another (but not
contradictory) perspective, Figure 6 suggests that with
learning, a preexisting coordination pattern (i.e., in-phase) is
locally altered to meet a competing task requirement,
leading to a composite, in-phase strategy.

Further notable feature of the coordination between
components is apparent in the velocity curves of Figure 6.
These show a tight time coincidence between peak positive
velocity of the lagging component (right finger) and peak
negative velocity of the leading component (left finger; cf.
peaks of solid line and valleys of dashed line, respectively).
This means that the right finger tended to flex to synchronize
with its visual prompt precisely when the left finger returned
from its own point of synchronization (cf. tick marks
representing metronome onsets). Accordingly, displacement
curves (lower window) show that flexion of tie right lagging
component (viz. upward movement of the solid line) was
accompanied by extension of the left leading finger (down-
ward movement of the dashed line). These epochs of
opposite motion of the components resulted in successive
drops of continuous relative phase (middle window) toward
180°. Such a drop may lead to values lower than 180°
because of cycle-by-cycle idiosyncrasies in each finger's
kinematics, as can be seen, for example, at about the sixth
cycle, when the left finger did not stay extended as long as
usual but immediately shifted a bit toward flexion.

Coordination epochs in which components moved anti-
phase with each other are even more apparent in the
behavior presented in Figure 7. The bottom window shows
that fingers tended to move in opposite directions for the
entire trial, so that the displacement of one finger seemed to
precisely mirror that of the other. We call this behavior the
anti-phase strategy. Accordingly, the top window illustrates
that peak negative velocity of one component coincided with
peak positive velocity of the other component while both
fingers paused (zero velocity) for about the same amount of
time. Thus, the continuous relative phase between the two
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Figure 5. Kinematic exemplar of the sinelike strategy. The top and bottom windows plot angular
velocity and displacement (Displcmt.) of the right and left fingers (solid and dashed lines,
respectively) in the indicated directions. The middle window displays the continuous relative (Rel.)
phase (solid line) between fingers and its point estimate (denoted by solid circles) calculated at peak
flexion. In all windows, long and short tick marks represent the occurrence of the leading (left) and
lagging (right) metronome signals, respectively. Coordinated sinewave-like motion leads to a
continuous relative phase that hovers around the 270° value, particularly at peak flexion, the
designated task requirement for the fingers to be synchronized with their respective metronomes.
Ext.-Flex. = extension-flexion.

components (solid line in middle window) tended to stay

around 180° for much of the cycle. A closer look at the

displacement curves (bottom window) reveals that, for both

fingers, the rest period lasted roughly as long as the

movement itself. More precisely, during half a cycle, the

finger was immobile in a given position (flexion or exten-

sion), moved away (to extension or flexion, respectively) for

the next quarter of the cycle, and finally returned to its initial

position in the last quarter of the cycle (flexion or extension).

A consequence of this inverted kinematic pattern is that the

fingers tend to momentarily realize the required relative

phase at the point in time defined by the metronomes, as

shown by the synchronization of the peak continuous

relative phase near 270° (see the solid line in the middle

window) with the pacing signals, whereas they basically

remain anti-phase for the remainder of a cycle. Accordingly,

the point-estimate values of relative phase (see the solid

circles) fall right on top of these peaks of the continuous

measure toward 270°, exhibiting an average of 244.2° with a

standard deviation of 10.6°. Here again, another composite

strategy is observed in which the existing anti-phase pattern

is locally tuned to meet a competing task requirement.

One advantage of both the in-phase and anti-phase
strategies (see Figures 6 and 7, respectively) may be that,

instead of maintaining the required phase relationship con-

stant throughout a cycle or a trial, the subject may achieve

the task by resorting to a stable coordination pattern (viz.

anti-phase) around the points of synchronization with the

discrete metronomes. Of course, this is possible only if the

finger displacement is not of the near-sinusoidal type

illustrated in Figure 5 but instead exhibits resting epochs

within a motion cycle in which the components stay either

in-phase or anti-phase with, each other.

This point is substantiated in Figure 8, which shows data

from 6 subjects who exhibited a strategy somewhat consis-

tently across trials.9 In Figure 8A, the top solid curve plots

the average absolute lag between peak positive velocity of

the lagging finger and peak negative velocity of the leading

finger for the first five and last five practice trials. The

bottom curve displays the corresponding standard deviation,

and vertical bars represent between-subject standard devia-

tions. Absolute lag dropped by more than 50% within the

first trials of practice and eventually hovered around 28° in
the last trials, corresponding to about a 70-ms time differ-

9 The 2 subjects whose data are shown in Figures 6 and 7 and 4
other subjects who practiced ±90° composed the group of 6
subjects who exhibited either the in-phase or the anti-phase
strategy shown here. The data for these subjects also are presented
individually in Figures 9 and 10, respectively.
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Figure 6. Kinematic exemplar of the in-phase strategy. The top and bottom windows plot angular
velocity and displacement (Displcmt.) of the right and left fingers (solid and dashed lines,
respectively) in the indicated directions. The middle window displays the continuous relative (Rel.)
phase (solid line) between fingers and its point estimate (denoted by solid circles) calculated at peak
flexion. In all windows, long and short tick marks represent the occurrence of the leading (left) and
lagging (right) metronome signals, respectively. Coordination of spikelike finger motion results in a
continuous relative phase that remains about 0° for most of the time but reaches the 270° required
value twice per cycle, particularly when the leading finger attains peak flexion and is synchronized
with its metronome. ExL-Flex. = extension-flexion.

ence between the fingers. Note that such a score reflects the
absolute error in synchronization, whereas the constant error
(not shown here) is about zero on the average. This decrease
in absolute lag was accompanied by a decrement in within-
trial and between-subject variability. Thus, Figure 8A sug-
gests that subjects performed the required task more stably
by synchronizing velocity peaks of both fingers with increas-
ing practice. In other words, this finding supports the idea
that subjects resorted to a composite strategy for performing
the required relative phase, in which the anti-phase coordina-
tion pattern was periodically involved. The top curves in
Figure 8B plot the average lag between peak flexion
displacement (solid lines) and peak flexion velocity (dashed
line) of the leading finger with respect to its metronome
signal for the first five and last five practice trials. The
bottom curves show the within-trial standard deviations, and
vertical bars denote between-subject standard deviations. At
the beginning of practice, peak velocity appeared to be well
synchronized with the metronome, whereas peak flexion
lagged behind by about 30°. At the end of practice, peak
flexion was better synchronized, with peak velocity slightly
ahead of the metronome by a comparable amount. Mean-
while, die variability of both variables decreased. Thus,
Figure SB indicates that with learning, peak flexion became
synchronized more precisely with the metronome, which

was exactly the explicit task requirement. Taken together,
the findings shown in Figure 8 suggest that for the 6 subjects
who adopted a composite strategy, coherence between
components was increased by temporally coupling velocity
peaks, thereby momentarily performing a predominantly
anti-phase pattern. Moreover, such moments of increased
coordinative coherence appeared to occur in tight synchrony
with the discrete temporal requirement imposed by the task,
at least early in practice. With further learning, between-
peaks synchronization shifted in time, such that maximal
flexion of each component coincided with the metronomes.
In summary, the temporary implementation of an anti-phase
pattern at the moment of synchronization, shown in bom the
in-phase and anti-phase strategies, may provide convenient
"anchor points" to coordinate the two components with
each other and to coordinate them with the task requirement
(see the General Discussion section).

Link Between Component and Collective Levels

The possibility of implementing different strategies for
realizing the same task raises a series of questions. Why are
there three strategies? Do such strategies reflect idiosyncra-
sies in coping with the task? Do they characterize a given
level of learning? Are they specific to the actual phasing to
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Figure 7. Kinematic exemplar of the anti-phase strategy. The top and bottom windows plot angular
velocity and displacement (Displcmt.) of the right and left fingers (solid and dashed lines,
respectively) in the indicated directions. The middle window displays the continuous relative (Rel.)
phase (solid line) between fingers and its point estimate (denoted by solid circles) calculated at peak
flexion. In all windows, long and short tick marks represent the occurrence of the leading (left) and
lagging (right) metronome signal, respectively. Coordination of mirrorlike finger motion results in a
continuous relative phase that remains about 180° for most of the time but tends to reach the 270°
required value twice per cycle, particularly when the leading finger attains peak flexion and is
synchronized with its metronome. Ext-Flex. = extension-flexion.
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be learned? A critical issue, especially in our approach to

learning, is whether these three different strategies pertain

to individual characteristics already present before exposure

to the learning task.

We first consider the 10 subjects who learned 90° or 270°.

Because coordination strategies tended to correspond to an

advanced stage in mastering the task, we focus on the last

five practice trials, over which we averaged the performance

of both fingers. Nine of 10 subjects exhibited one of the

typical behaviors illustrated in Figures 5-7 (sinelike, in-

phase, and anti-phase strategies, respectively). Performance

for the last subject was difficult to characterize because of

trial-to-trial variability in terms of synchronization with the

metronome.

The top three rows of windows in Figure 9 show

kinematic data for 3 subjects who practiced 90° or 270° (the

subject's data depicted in the middle window are those

illustrated in Figure 6). The graphs on the left side show the

angular displacement (in arbitrary units) of the right and left
fingers (solid and dotted lines, respectively), averaged over

the last five practice trials and plotted for the first 10 s.

Typically, fingers exhibit spikelike excursions to flexion,
with noticeable rest periods in extension. The top three

graphs on the right side show the corresponding continuous

relative phase calculated over the same time period. The

relative phase exhibited large oscillations (covering about

270°). Notably, it stayed around a 0 (or 360°) value for a

major part of a movement cycle but still achieved the

required phasing (denoted by the dotted horizontal line at

90° or 270°) once per cycle. Such behavior is characteristic

of the in-phase strategy shown in Figure 6 (cf. the bottom

and middle windows, respectively). The bottom windows

display scanning probes carried out before (left) and after

(right) practice averaged over the same 3 subjects. Both

graphs plot the mean error in relative phase as a function of

the required phasing, with vertical bars encompassing ± 1

between-subject standard deviation. Note that, unlike Figure

1, Figure 9 does not separate the 180° requirement as a

function of the two runs composing the probe. Before

learning (left window), a negative slope of the error curve

about 0° (or 360°) spans a wide range of phasing require-

ments. Such a steep and marked slope about 0° denotes that

the in-phase pattern strongly attracted neighboring relative

phases, more so than the anti-phase pattern. Thus, the initial
probe for the 3 subjects illustrated in Figure 9 indicates a

prevalent coordination tendency to in-phase behavior before
learning. After learning (bottom right window), the main

feature of the collective variable dynamics is attraction to

the newly learned ±90° patterns. Note that both the learned

and transferred patterns contribute to the negative slope
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Figure 8. Changes in synchronization with learning. A: The average absolute (Abs.) mean lag

between peak positive velocity of the lagging finger and peak negative velocity of the leading finger

(top curve) and the associated standard deviation for the first five and last five practice trials. Vertical

bars denote between-subjects standard deviations. Learning leads to a tighter synchronization of

velocity peaks, suggesting that the task requirement may be met through a composite strategy

involving the anti-phase pattern. B: The top curve plots the mean lag between peak flexion (solid

lines) and peak flexion velocity (dashed lines) of the leading finger with its pacing signal for the first

five and last five practice trials. The bottom curve plots the associated standard deviations, and

vertical bars denote between-subjects standard deviations. In compliance with the task requirements,

synchronization of peak flexion improves with learning.
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Figure 9. The relationship between component and collective dynamics in the in-phase strategy.
The top three pairs of windows show kinematic data for 3 subjects, 1 per row, averaged over the first
10 s of the last five practice trials. The left windows plot the excursions of right and left fingers (solid
and dotted lines, respectively) in the indicated directions. All exhibit coordinated spikelike finger
motion similar to that described in the bottom window of Figure 6. The three right windows plot the
corresponding continuous relative phase (cont.rel.ph.). These display a highly variable phase
relationship that meets the task requirement (denoted by the dotted line) periodically while mostly
staying around 0°/360° otherwise (cf. the middle window of Figure 6). Such kinematic features are
characteristic of the in-phase strategy. The bottom left and right windows display the results of the
probes carried out before and after practice, respectively, averaged over the same 3 subjects. The
mean error in relative phase is plotted as a function of the required relative phase (vertical bars denote
the between-subjects standard deviations). Before learning, the wide and steep negative slope about
0° reflects a strong coordination tendency to in-phase. After learning, performance is attracted instead
to ±90°. ext.-flex. = extension-flexion.

because the subjects practiced either 90° or —90°. Coining

back to the component level (top windows), it is striking that

attraction to in-phase also was noticeable after learning in

the kinematics of the components. Although the new phas-

ing pattern was actually performed at peak flexion in syn-

chrony with the metronomes (cf. the solid circles in Figure

6), the components tend to relax to in-phase, whereas,

strictly speaking, the periodic "forcing" that actually stipu-

lates the required phasing pattern no longer exists. In other

words, behavior at the component level appears to reflect

both the remnant effects of an attractive state that existed

before practice and the influence of the newly learned pattern.

Figure 10 shows data from 3 other subjects who practiced

90° or 270° (the subject data depicted in the middle window



1472 ZANONE AND KELSO

Required phasing (deg)
W 120 150 180 210 2*> 270 300 330 360

Required phasing (deg)

Figure 10. Relationship between component and collective dynamics in the anti-phase strategy.
The top three pairs of windows show kinematic data for 3 subjects averaged over the first 10 s of the
last five practice trials. The left windows plot the excursions of right and left fingers (solid and dotted
lines, respectively) in the indicated directions. All exhibit coordinated mirrorlike ringer motion
similar to that described in die bottom window of Figure 7. The three right windows plot the
corresponding continuous relative phase. These display a highly variable phase relationship that
meets the task requirement (denoted by the dotted line) periodically while mostly staying around
180° otherwise (cf. the middle window of Figure 7). Such kinematic features are characteristic of the
anti-phase strategy. The bottom left and right windows display the results of the probes carried out
before and after practice, respectively, averaged over the same 3 subjects. The mean error in relative
phase is plotted as a function of the required relative phase (vertical bars denote the between-subjects
standard deviations). Before learning, the wide and steep negative slope about 180° reflects a strong
coordination tendency to anti-phase. After learning, performance is attracted instead to ±90°.
ext.-flex. = extension-flexion.

are those illustrated in Figure 7). In the three top left

windows, finger motion reflects an overall mirrorlike behav-

ior of the components, with marked rest periods in the

opposite positions. The continuous relative phase shown in

the top right windows is centered about ISO0, although it is

rather variable (over a 270° span). After learning (bottom

right window), the collective variable dynamics clearly

exhibits attraction to the newly learned ±90° patterns. The

picture is similar to the corresponding one in Figure 9. At the

component level, this strong tendency to anti-phase before

learning still appears to influence performance after learning
because the components tend to relax to a 180° phase

relationship after having periodically met the task require-

ment (cf. the solid circles in Figure 7). Here again, behavior
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reflects the influence of both initial and learned attractive
stales.

Figure 11 shows data from 3 other subjects, who practiced
90° or 270° (the subject data depicted in the middle window
are those illustrated in Figure 5). The three top left windows
exhibit a fairly sinewave-like motion for both fingers, at
least without clear rest periods. The corresponding continu-
ous relative phase (top right windows) is less variable and

hovers around the required value (dotted line). The initial
probe of the coordination dynamics (bottom left window)
indicates that the 0° and 180° patterns are the most stable,
but their attraction is relatively weak compared with the
preceding figures, and their strengths are similar. The lack of
marked coordination tendencies before learning suggests
that the components might have remained close to the
learned phasing over an entire performance cycle because

30 60 90 120 150 180 210 240 270 300 330 360

Required phasing (deg)
0 30 60 90 120 HO 180 210 240 270 300 330 360

Required phasing (deg)

Figure 11. Relationship between component and collective dynamics in the sine strategy. The top

three pairs of windows show kinematic data for 3 subjects, averaged over the first 10 s of the last five

practice trials. The left windows plot the excursions of right and left fingers (solid and dotted lines,

respectively) in the indicated directions. All exhibit coordinated sinelike finger motion similar to that

shown in the bottom window of Figure 5. The three right windows plot the corresponding continuous

relative phase. These display a less variable phase relationship that hovers around the task

requirement (denoted by the dotted line; cf. the middle window of Figure 5). Such kinematic features

are characteristic of the sinelike strategy. The bottom left and right windows show the results of the

probes carried out before and after practice, respectively, averaged over the same 3 subjects. The

mean error in relative phase is plotted as a function of the required relative phase (vertical bars denote

the between-subjects standard deviations). Before learning, the narrow and less marked negative

slopes about 0° and 180° do not indicate any strong coordination tendency before learning. After

learning, performance is attracted to ±90°. ext.-flex. = extension-flexion.
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they were not attracted to in-phase or anti-phase as soon as
the task stopped specifying the required coordination pat-
tern. After learning (bottom right window), however, the
collective dynamics were comparable to those pertaining to
the other strategies, showing stabilization of a new attractive
state close to the to-be-learned phasing.

In summary, Figures 9-11 suggest that different behaviors
described at the level of the components (i.e., in-phase,
anti-phase, and sinelike, respectively) may be readily related
to an evaluation of the collective variable dynamics con-
ducted before learning: The kinematic behavior of the
components after learning a new coordination pattern may
be predicted from the relative strength of preexisting attrac-
tive states at the collective level, under the caveat that the
system will tend to relax to the most prominent attractive
state when the (discrete) learning task no longer specifies a
given coordination pattern. After learning, however, the col-

lective dynamics are similar regardless of the strategy adopted.
Interestingly, the foregoing description also holds for the

4 subjects who already exhibited the ±90° attractive states
in the initial probe and therefore had to learn another phasing
pattern (see Figure 4). In Figure 4A, the subject's perfor-
mance in the first practice trial of a 135° relative phase,
which was actually close to 90°, was typical of the sinelike
strategy. After learning, when performance was about 135",
the adopted strategy was still of the sinelike type. Similarly,
the 3 other subjects with multistable collective dynamics
exhibited an in-phase strategy in the first practice trials, and
still did so after learning, regardless of their respective task
requirement. Thus, when a pattern other than in-phase or
anti-phase was already available before practice, strategies
appeared to be independent of the actual phasing require-
ment and the level of learning (i.e., they were idiosyncratic).
As we have shown, such strategies may stem from the very
stability properties of the individual coordination tendencies
that existed before exposure to the learning task.

General Discussion

Our goal in this research was to characterize the processes
of learning novel coordination patterns in terms of changes
in hypothesized coordination dynamics. To fully understand
such change, we argue that one must evaluate coordination
tendencies that exist before learning for each individual
learner. Taken together with our previous work (Zanone &
Kelso, 1992a), a fairly coherent picture of the learning
process emerges at the level of the collective variable,
relative phase, that also provides a first glimpse into
principles underlying transfer of learning. Moreover, in the
present study we introduced a new, lower level of descrip-
tion to the whole process by considering how changes in
coordination dynamics at the collective level correspond to
specific adjustments in the component motions that also are
characteristic of the individual learner. In the following, we
discuss the connection between our experimental findings
and then- interpretation in terms of a dynamical theory of
learning. We focus first on the level of the collective variable
dynamics. We then address strategies that are used to satisfy
learning requirements at the component level and emphasize

the self-consistency between the collective and component
levels of description. Finally, we briefly address some
outstanding issues that remain to be resolved and place our
results in the broader context of learning theory.

One of the central theoretical ideas of our approach to
learning is that learning a new pattern involves alterations of

the entire layout of the coordination dynamics, not only
changes in the specific criterion task. Evidence from the
scanning probes suggests that the learned coordination

pattern becomes an attractive state of the collective variable
dynamics. On the one hand, Figure 1 basically corroborates
our previous findings (Zanone & Kelso, 1992a): With
learning, a new attractive state of the coordination dynamics

is established close to the to-be-learned relative phase. On
the other hand, Figure 4 shows a different picture on two
counts: First, the coordination dynamics may be multistable
before learning (i.e., with attractive states other than the
in-phase and anti-phase patterns). Second, learning may
involve a shift of existing stable coordinative states in the
direction of the to-be-learned pattern. Thus, a novel finding
yielded by our study is the existence of two different routes
to learning depending on the initial attractor landscape:
Learning may lead to qualitative changes or to parametric
changes in the initial coordination dynamics. In the former

case, the attractor layout evolves from a bistable to a
multistable structure, whereas in the latter case, the attractor
layout is already multistable to begin with but is transformed
to a different multistable structure. Interesting questions now
arise: How articulated can a multistable attractor layout
become with learning? Can previously stable patterns (e.g.,
90°) be stabilized while new ones (e.g., 135°) are learned?
Does overpractice of a pattern that already belongs to the
learner's coordination tendencies before exposure to the task
eventually lead to a bifurcation, annihilating other preexist-
ing attractive states?

Independent of these issues, the present results support
our key theoretical tenet that practice stabilizes the to-be-
learned pattern, causing specific modifications of the entire
coordination dynamics in the direction of the task require-
ment. Such modifications are essentially nonequilibrium
phenomena (Kelso, 1990; Zanone & Kelso, 1992a) in which
previously stable patterns (e.g., 180° or 90° depending on
the route taken) may destabilize temporarily or permanently.
As we have just seen, how such alterations actually unfold

depends on the individual coordination tendencies existing
before learning. These results suggest that conventional
views of motor skill acquisition (see Newell, 1991; Schmidt,
1988; Schmidt & Bjork, 1992, for reviews) or dynamically
oriented approaches (Beek & van Santvoord, 1992; Saltz-
man & Munhall, 1992; Schmidt et al., 1992; Swinnen et al.,
1993; Vereijken et al., 1992) have much to gain from taking
into account such preexisting constraints (here, extant
coordination tendencies). So also, we contend, does develop-
mental theory (cf. Sporas & Edelman, 1993).

Another new finding of our research is the somewhat
serendipitous discovery of the spontaneous transfer of
learning. This was possible because of the careful sampling
of the entire layout of the coordination dynamics, which was
not accomplished in previous work (Zanone & Kelso,
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1992a). A related finding in this context is that the symmetry

of the coordination dynamics before learning (implicit in the

case of Instability because 180° and —180° are congruent)
was demonstrated for multistable dynamics as well (see

Figure 4). Regardless of the initial regime of the coordina-
tion dynamics, however, we show that there is automatic
stabilization of a coordination pattern that has never been

practiced at all. Significantly, it is the symmetry partner of
the to-be-learned pattern that exhibits transfer, suggesting
that an underlying symmetry of the coordination dynamics is
preserved as learning proceeds. Thus, not only does the
learned pattern stabilize with learning as theory predicts but

its symmetry partner also becomes an attractive state of the
coordination dynamics. These results point to the abstract

(but physically realized) nature of the learning process,
namely, that the phase relationship is stabilized independent
of component order. How abstract, transferable, and general-
izable such learned relative timing is an obvious topic for
future research (see Zanone & Kelso, 1994, for an ex-

panded agenda).
As noted by Bray (1928), "it has long been known that

practice of one part of the body in performing a skilled act
increases the ability of the bilaterally symmetrical part in the
same act" (p. 443). What we have shown here is that patterns
of coordination between such symmetrical parts transfer
spontaneously. Thus, we may assume that the mere transfer
of performance between symmetrical parts reported by Bray
pertains to the automatic stabilization of a new stable state in
the underlying coordination dynamics, so that the original
symmetry of the coordination dynamics and the equivalence
between components are preserved. This process points to a
temporal equivalence principle, namely, that the same
temporal pattern can be produced through different serial
ordering among the components (e.g., Jordan, 1995). In
many respects, this notion is the temporal counterpart of
"motor equivalence" (e.g., Hebb, 1949; Lashley, 1951),
which stipulates that the same spatial goal can be achieved
by different configurations among body parts. We hypoth-
esize that the fine balance between stability and flexibility
shown in both temporal and spatial equivalence arises from
the abstract nature of the coordination dynamics.

A novel contribution of the current study is that a more
refined understanding of the learning process is gained by
considering how the learning task (a nonpreferred coordina-
tion pattern) is realized at the component level, here the
fingers. Figures 5-7 show that after learning, three different
coordination strategies between the components may be
implemented to meet the same task requirement This, of
course, constitutes another example of temporal equiva-
lence. Notably, such strategies are specific to the individual
learner. Figures 9—11 show that these component strategies
reflect idiosyncratic tendencies that are revealed at the
collective level through the prelearning scanning probe.
Then, when learning itself involves a qualitative change
from bistable to multistable dynamics, the creation of a
novel attractive state at the required relative phase implies
the implementation of an altogether new coordination strat-
egy between the components. In contrast, when learning
involves the shift of a preexisting attractive state, such a

parametric change in the coordination dynamics corre-
sponds to an adjustment of the actual phasing between the
components within the same coordination strategy adopted
by each individual. Thus, briefly stated, dramatic changes
shown in the coordination dynamics appear to necessitate
dramatic changes in the component dynamics, whereas
parametric changes in the collective dynamics involve

parametric changes in the component dynamics. The corre-
spondence between coordination and component dynamics
demonstrated here experimentally constitutes a hallmark of
the dynamic pattern approach, namely, to establish a connec-
tion between levels of description (see the introduction; for

details, see Kelso, 1995).
Among coordination strategies, the most interesting are

the so-called composite strategies (in-phase and anti-phase;

Figures 6 and 7, respectively). Both show that after the
subject precisely matches the task requirement by synchro-
nizing finger peak flexion with the metronome, performance

is attracted to the natural tendencies of the components to go
in-phase or anti-phase. Such behavior of the components
themselves reflects competition between the task constraints
and the initial coordination dynamics, which were already

assessed at the collective level through the bias and variabil-
ity of the collective variable (e.g., see Figure 1). Such a
competitive mechanism is analogous to the dual "mainte-
nance tendency" and "magnet effect" first described by von
Hoist (1973) on coordinated motion of fins in the fish. The
former refers to the propensity of the fins to sustain their
own (uncoupled) frequency of oscillation, whereas the latter
refers to the tendency of the coupled components to
synchronize with each other. Because of these competing
demands, a fixed phase locking between components is not
attained across performance cycles, but only phase entrain-
ment. Periods of stable relative phase are often followed by a
period of phase slippage or wrapping (Kelso, Delcolle, &
SchSner, 1990; see DeGuzman & Kelso, 1991, for a
theoretical account). Here, epochs of stability alternate with
epochs of variation within a performance cycle, a behavior
that arises from competition between the discrete task
constraint and existing coordination tendencies between the
components. In other words, the phasing constraint intro-
duced by the task appears to determine the component
behavior at a specific point in time, namely, at the very
moments when the task itself requires the synchronization of
each component with its own pacing signal. This suggests
the existence of "anchor points" where trajectories in phase
space converge to comply with an external pacing signal.

Such anchor points have been identified in bimanual
coordination (Byblow et al., 1994) for the stable in-phase
and anti-phase patterns, as well as in four-limb coordination
(Jeka, Kelso, & Kiemel, 1993; Kelso & Jeka, 1992) and
synchronization-syncopation tasks (Kelso et al., 1990).
Here, however, an opportunity is provided to see how
different and novel coordination strategies that involve such
time anchoring are actually learned. Important questions are
still open: To what extent are composite strategies a mere
consequence of die discrete nature of the task requirements?
Do they represent a necessary, if temporary, step to master-
ing the task? What factors determine the emergence of one
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or another strategy as learning proceeds? Again, a theoreti-
cal answer may be found in the (competitive or cooperative)
interplay between task demands and existing coordination
tendencies, a role for which has been shown here at both
collective and component levels. The influence that such
constraints have on the learning process is open to further
investigation. The relative stability of the in-phase and
anti-phase patterns is dependent on the system under study
(e.g., leg vs. arm coordination) and on some experimental
parameters (e.g., frequency, spatial orientation), thereby
affecting the probability of occurrence of the composite
strategy. On the other hand, individual components them-
selves (say, a finger vs. an arm vs. a leg) may display
differential resistance to the breakdown of near-harmonic
motion. For instance, oscillators with larger inertia tend
spontaneously to exhibit a motion similar to the sinelike
strategy. Similarly, the same component operating at a
higher frequency will perforce behave in a smoother fash-
ion. These factors, of course, are not mutually exclusive.

Our results raise a number of questions about learning that
need to be addressed both from the experimental and
theoretical points of view. A crucial issue pertains to our
assumption that the newly learned pattern eventually achieves
the same status as initially attractive states of the coordina-
tion dynamics. A definitive validation would be provided if
the learned attractive state also manifested itself under
nonspecific parametric changes, that is, when the system is
driven through its stable coordinative states by manipulating
a control parameter that is not related to the collective
variable, as in the original Kelso paradigm. Results of recent
experiments (Athenes & Zanone, 1994; Zanone, Athenes, &
Kelso, 1997) provide preliminary support for this assump-
tion. Various signs of attraction to the newly learned pattern
or its symmetry partner were observed during parametrically
induced phase transitions. Another, more theoretical concern
pertains to our discovery that the transfer of learning follows
a type of symmetry conservation. This means that the
original theory (Schoner & Kelso, 1988a, 1988b; Schoner et
at., 1992) must be expanded to account for such symmetric
changes in the coordination dynamics. One solution is to
ascribe learning and transfer effects to higher order terms
(e.g., 1T/2-, iT/3-,..., periodic) in the Fourier expansion of
the Haken-Kelso-Bunz equation (Haken et al., 1985).
Before learning, these terms are set to zero, leaving the
coordination dynamics bistable at 0° and 180°, as in the
original model. After learning, they assume a nonzero value
because of the evolution of the memory dynamics, thereby
generating a multistable regime that contains the new,
learned attractive states.10 A similar formal treatment is
necessary to account for the presence of multistable coordi-
nation dynamics before learning. We hope to accommodate
these effects theoretically in the near future.

What are the implications of our results and approach for
motor learning theory? Despite much work on learning and
transfer (e.g., Adams, 1987), progress, it seems, has been
limited. Summarizing the available knowledge to date,
Schmidt (1988) pointed out two findings: (a) The amount of
transfer seems to be small and positive unless the tasks are
practically identical and (b) the amount of transfer depends

on the similarity between the tasks. However, the measures
usually used in learning studies have been somewhat
superficial (e.g., performance improvement in different tasks
and the percentage of transfer) and often do not directly
assess learning or transfer processes per se. Relatedly, no
principled basis has been found to establish the degree of
(dis)similarity between two tasks. In our perspective, by
explicitly defining both the task demands and the individual
predispositions in the space of the collective variable, it has
proved possible to identify learning and transfer as alter-
ations in the layout of underlying coordination dynamics and
to evaluate the similarity between behavioral patterns in
terms of distance in phase space and symmetry order.
Regarding learning, we have spelled out predictions about
distance effects in terms of rate or form of learning (Zanone
& Kelso, 1994). The role of symmetry is less clear but
nevertheless testable. One question is whether the stable
patterns of dynamics with lower symmetry (e.g., ir-periodic)
have to be (de)stabilized for patterns defining higher symme-
try dynamics (e.g., ir/2-periodic) to be learned. Similar
arguments may be put forth about other persisting issues in
learning theory. The inability to specify the influence of task
demands on initially stable coordination patterns might have
hindered understanding of well-established effects on learn-
ing, such as contextual interference or variability of practice.

What are some of the implications of our results and
approach for learning theory in general? We have shown that
organisms (here people) enter the learning situation with a
certain degree of preorganization that clearly constrains the
learning process. Actually, we have shown that such indi-
vidual predispositions may predict the form that learning
takes and the coordination strategy that eventually realizes
the task. Although different in origin, our approach empha-
sizing the role of individual constraints in learning is
continuous with others, especially biological constraint
perspectives (e.g., Bolles, 1970; Garcia & Garcia, 1985;
Germana, 1989; Timberlake, 1993). In the latter, constraints
are partially innate and species specific and reflect evolution-
ary processes shaping the organism's ability to survive in a
specific environment. Thus, learning is a fine-tuning, selec-
tive process operating on an existing functional organiza-
tion. For us, whether coordinative constraints are innate or
attributable to previous experience is not a crucial distinc-
tion. What is important is that whatever is learned is
determined relative to constraints that can be identified and
measured. Stimuli are not just arbitrary bits of information to
associate with responses. What is informationally relevant to
the organism in our theory depends on existing organization,
here operationalized in terms of behavioral patterns and
conceptualized as an attractor layout or coordination dynam-
ics. Theoretically, competitive and cooperative mechanisms
can be evaluated only in relation to existing coordination

10 In particular, the removal of a ir/2-periodic term added for

capturing the pair of stable states at ±90° established by learning

and transfer leads to a subcritical pitchfork bifurcation, analogous

to that occurring in the parametrically induced phase transition

from bistable to monostable dynamics reported by Kelso (1984).
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tendencies, making the individual learner the significant

unit, not the group or the species.
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Appendix

Dynamics and Relative Phase Measures

We investigated learning at both levels of the collective and

component dynamics, for which we used point-estimate and

continuous measures of the collective variable, relative phase (<)>),

respectively. In the text (see the section on the link between the

component and collective levels), we showed that both measures

are adept at characterizing the learner's behavior and at revealing

learning effects in a consistent manner. As far as learning a new

coordination pattern is concerned, both tell the same story, except

for a difference in the temporal and spatial graining: Learning

establishes a new stable phasing pattern at the required value. At

the collective level, the learned pattern is mostly revealed by

attraction of the surrounding relative phases in parameter space,

whereas at the component level, learning is shown by the actual

achievement of the discrete coordinative task specified by the

metronome. The goals of the Appendix are (a) to elaborate on the

theoretical link between the collective and component levels,

beyond the experimental evidence already provided, and to show

the equivalence, hence the pertinence of their respective measure-

ment for capturing the underlying coordination dynamics and (b) to

establish the adequacy of the Haken, Kelso, and Bunz (1985)

model (the HKB model) for the somewhat peculiar behaviors

classified as different coordination strategies (see Figures 5-7). We

emphasize the intuitive and logical aspects of the argument rather

than its formal development, which may be found elsewhere

(Fuchs, Jirsa, Haken, & Kelso, 1996; Fuchs & Kelso, 1994).

A dynamical system is a system of equations determining the

evolution of a vector, x = (x,, x& jc3,...), with time. If x is a

continuous function of time, its dynamics may be defined as an

ordinary differential equation (ODE):

x = F(x), (Al)

where x denotes the derivative with respect to time and F(x) the

vector field. If x is a discrete function of time, another class of

dynamical systems describes the dynamics of x as a difference

equation or (iterative) map:

(A2)

where x at a given time r is determined by precedent x, n iterations

away. In the simplest case where n = 1, the system's current state

defines its immediate successor.

There is, however, an intimate relationship between ODEs

(Equation Al) and maps (Equation A2) in the particular case of

periodically forced systems. Using a technique called Povncare

section, a continuous ODE can be "reduced" to a discrete map. We

illustrate the process with our experimental model system, coordi-

nation between fingers, formalized by the HKB model. Such a

coordination system may be conceived of as nonlinearly coupled

nonlinear oscillators, in which the fingers reciprocally drive (viz.

force) each other. The phase of the right and left individual fingers

in the x-x plane (i.e., 6r, 61, respectively) varies from 0° to 360°

over one respective period of time (!/(»„ I/<DI, where ian coi are the
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respective frequencies of each component). The trajectory (i.e., the

ensemble of the values taken over time) for each phase corresponds

to a full circle. How such phases actually evolve with time is

determined by the ODEs of each component. The relative phase

(<|> = 6] — 8r) of this pair of oscillators may be represented on a

doughnut-shaped torus formed by two such circles, one, say 61,

running orthogonally along the circumference of the other, 8,. Such

a torus contains all possible trajectories of the relative phase

between the oscillators. Again, the actual trajectories are deter-

mined by various parameters in the system of ODEs defining the
entire dynamics (e.g., coupling strength, eigenfrequencies, etc.). If

one intersects half of the torus by a transverse plane, the trajectory

of relative phase pierces this surface each time the phase of the

right oscillator (6r) achieves a complete revolution. Of course, such

intersecting points will all lie on a circle, representing the possible

values of the other oscillator's phase (60 at that moment. Thus, the

process amounts to stroboscopically sampling the phase of an
oscillator each time the other has reached a given phase. Most

important is that the discrete evolution of the intersecting points is

governed by the dynamics of the continuous system. Of course, the
continuous trajectory of relative phase between the intersection

points is lost Yet, the essential features of the (common) dynamics—

namely, attractive states—are preserved, and may be observed as

clusters of points on the 81 circle in the Poincare' section plane. In

conclusion, a map proves to be a valid means to characterize a

continuous dynamical system such as bimanual coordination
studied here. Discretization of time and reduction of the system's

dimensionality are exactly what has been accomplished in our

study by using the point-estimate measure of relative phase as a

collective variable (see Figures 5-7).

By definition, the passage from an ODE to a map gets rid of the

details of the actual motion of the oscillators, however important

such details may be behaviorally (as we have seen in the current

study of the component level). Consequently, the hannonicity of
the oscillators does not constitute a requirement for performing a

Poincare' section. The only prerequisite, of course, is that the

motion be periodic, without which the strobing essential to

generate a return map is not possible.

The second issue addressed in this Appendix is the mapping

between the theoretical and experimental relative phases (see

Fuchs et al., 1996, for a complete treatment). In fact, for (continu-

ous) relative phase to be always constant, the oscillators must be
harmonic (pure sine-cosine functions). For nonlinear oscillators,

relative phase generally exhibits fluctuations, lite those shown in

the middle of Figures 5-7. (An exception occurs when the

oscillators go in-phase or anti-phase and their phase portrait is
symmetrical with respect to the origin. This is why, although the

HKB model posits nonlinear van-der-Pol oscillators [a best esti-
mate of the slightly nonharmonic motion usually exhibited by the

fingers in the first experiments by Kelso and colleagues], the

relative phase proves to be stable at in-phase and anti-phase.)

Consequently, the most harmonic motion illustrated in Figure 5

shows the least jagged continuous relative phase time series. The

theoretical problem to be solved is how a continuous relative phase

that appears to fluctuate with time can be consistent with the

assumed stability of the collective variable, which is evaluated, in

our case, vising the point-estimate measure.
Three methods are available to compare experimental data and

theoretical results. The first two procedures, which are general,
involve the calculation of the relative phase equation of motion in
phase space or a nonlinear transformation of time, respectively (see

Fuchs et al., 1996). The third, more simple method applies here.

The basic idea is to introduce a phase for each frequency
component taken from the Fourier decomposition of each oscillator

motion. In the case of a harmonic oscillator, the solution contains

only one frequency (<o) and one phase (i|i0):

x(t) = A cos (tat + >K,), (A3)

where A is a constant denoting the amplitude of the motion.

Likewise, for a nonharmonic oscillator, which contains many

harmonics (or subharmonics), one has a single frequency and phase

for each Fourier component:

x(t) cos (n<at+ (A4)

In general, the calculations of the explicit amplitudes and phases,

hence of the relative phase, give rise to huge expressions due to the
nonlinearities of the oscillators and the coupling between them.

However, if the time series of both oscillators have the same power

spectrum (up to a constant factor), and the relation

holds, then the continuous relative phase is well defined. (The

demonstration, which necessitates only college-level algebra, is not
given here.) The first condition requires that the two time series

have the same main frequency component and harmonics, to a
common scaling in amplitude. The second condition stipulates that

the relative phase between pairs of successive harmonics increases

as a multiple of the base relative phase, <$>• If both conditions are

satisfied, then the two time series are simply shifted in time.
Therefore, the relative phase, d>, is the time shift divided by the

time period T multiplied by 2ir (viz. 360°).
Let us return to our data. The behaviors illustrated in Figures 5-7

typical of the sinelike, in-phase, and anti-phase strategies were sub-
jected to a Fourier transform, shown in the top, middle, and bottom

rows, respectively, in Figure A1. The left and middle columns show

the power spectra of the right and left finger motion, respectively.

The right column plots the relative phase between each pair of
frequency components. The first two columns demonstrate that for

all strategies, the power spectra for the right and left fingers are
quite comparable. In particular, the mam frequency component is,

of course, at 1.25 Hz, that of the metronome. The spectra also
exhibit a harmonic at 2.5 Hz and, for the in-phase strategy (middle

row), a barely noticeable extra harmonic at 3.75 Hz. The graphs of

the right column in Figure Al show that for all strategies, the

relative phase between the main frequency components (1.25 Hz)

of the right and left finger motion and that of the first harmonic

component (shown by the solid circles) are close to 270° and 180°,

respectively. Thus, the two conditions stipulated above are indeed

satisfied, demonstrating that for all strategies the time series are

merely shifted in time by 270° of relative phase. Note that the same
analysis conducted on the time series presented in the top windows

of Figures 9-11 gave similar results (data not shown). Therefore,
further theoretical treatment of the data, hi our case through the

HKB model or derivatives therefrom, is perfectly legitimate.

More generally, the relative phase between two periodic time

series is customarily assigned to that between their main frequency
components, which carry most of the power in the Fourier
spectrum. This is how biological signals at all levels of description

(e.g., opening of membrane ion channels, neuron firing, electromyo-
graphic or electroencephalographic activity, motor performance),

albeit fundamentally nonharmonic (e.g., randomlike time series,

bursts of spikes, jerky signals), are amenable to formalization. In
particular, their modeling in terms of relative phase dynamics has

proved successful and insightful, emphasizing the central role of
phase attraction in mutual synchronization, a ubiquitous property
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Figure Al. Fourier analysis of finger motions for different coordination strategies. The top, middle,

and bottom rows concern the analysis of the time series shown in Figures 5-7 (bottom window)

typical of sinelike, in-phase, and anti-phase strategies, respectively. The left and middle graphs show

the power spectra of the right and left finger motions, respectively. The right graphs show the relative

(Rel.) phase between each pair of corresponding Fourier components. The relative phase for the main

frequency component (1.25 Hz) and its first harmonic is represented by solid circles. The figure

demonstrates that in all cases, the finger motions are actually shifted by 270° of relative phase,

thereby being amenable to a theoretical formalization like the model of Haken, Kelso, and Bunz
(1985).

of biological systems (e.g., Mirollo & Strogatz, 1990; Rand,

Cohen, & Holmes, 1988).

Therefore, there is no contradiction between the stability of the

theoretical relative phase and the actual fluctuations of the calcu-

lated continuous relative shown in Figures 5-7. In this article, our

intention was to characterize the qualitatively different behaviors

through which subjects succeeded in meeting the task require-

ments. Although this is not the relative phase used for formaliza-

tion, the continuous relative phase calculated following the Kelso

et al. (1986) procedure (see the Method section) is actually very

good at distinguishing among the three different strategies. The

reason is that when the components do not move, both individual

phases in the i — x plane remain the same, and the relative phase

between the components corresponds to their relative positions

during such rest periods. However, the mapping between theoreti-

cal and experimental relative phases is realized through the

pointwise measure, which is indeed stable after learning. Again,

this proves the pertinence of the point-estimate measure as a

collective variable.
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