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Learning a bimanual coordination task (synchronization to a visually specified phasing relation)
was studied as a dynamical process over 5 days of practicing a required phasing pattern. Systematic
probes of the attractor layout of the 5 Ss' coordination dynamics (expressed through a collective
variable, relative phase) were conducted before, during, and after practice. Depending on the
relationship between the initial coordination dynamics (so-called intrinsic dynamics) and the
pattern to be learned (termed behavioral information, which acts as an attractor of the coordi-
nation dynamics toward the required phasing), qualitative changes in the phase diagram occurred
with learning, accompanied by quantitative evidence for loss of stability (phase transitions). Such
effects persisted beyond 1 week. The nature of change due to learning (e.g., abrupt vs. gradual)
is shown to arise from the cooperative or competitive interplay between behavioral information
and the intrinsic dynamics.

Among the adaptive features of living things, learning is
remarkable in two respects. First, learning results in durable
and innovative modifications of behavior according to specific
constraints. Second, such a process unfolds on a time scale
compatible with its experimental study. It is little wonder that
most "historical" theories in psychology are theories of learn-
ing. Nowhere is this more apparent than in the field of
perceptual-motor behavior, in which a great deal of work has
attempted to unravel the mechanisms and the principles of
learning a new skill (e.g., Adams, 1987; Marteniuk & Roma-
now, 1983; Newell, Kugler, van Emmerik, & McDonald,
1989; Pew, 1974; R. A. Schmidt, 1987).

In a now-classic paper, Fitts (1964) defined skill as a highly
organized behavior in both space and time and the central
problem of skill learning as how such organization or pattern-
ing comes about. Understanding the formation of spatiotem-
poral patterns of behavior in systems of many interacting
components is not unique to psychology but straddles all of
the natural sciences (e.g., Haken, 1977/1983a; Kelso, Man-
dell, & Shlesinger, 1988; Nicolis & Prigogine, 1989; Prigogine,
1980). For example, in synergetics (Haken, 1977/1983b,
1983a), a physical theory of self-organization and pattern

This research was supported by National Institute of Mental Health
Grant MH42900, Biomedical Research Support Grant NSS 1-SO7-
RR07258-01, and Contract N00014-88-J-119 from the U.S. Office
of Naval Research. P. G. Zanone was also supported by the Swiss
National Science Foundation, Grant 8210-026064.

Preliminary versions of this article were presented by J. A. S. Kelso
at the International Workshop on Synergetics of Cognition, Schloss
Elmau, Bavaria (June 1989), and by P. G. Zanone at the NATO
Advanced Study Institute on Motor Neuroscience, Ajaccio, Corsica
(September 1990).

We thank three anonymous reviewers and Betty Tuller for their
comments and suggestions and Gregor Schoner for many helpful
discussions.

Correspondence concerning this article should be addressed to
J. A. S. Kelso, Center for Complex Systems, Florida Atlantic Univer-
sity, P. O. Box 3091, Boca Raton, Florida 33431-0991.

formation in nonequilibrium systems, a central theme is the
reduction of the number of degrees of freedom near critical
values of a parameter (so-called control parameters), where
patterns form or change spontaneously. Emerging patterns
are characterized by only a few collective variables (or order
parameters) whose dynamics (equations of motion) are low-
dimensional but nonlinear and hence capable of displaying a
rich variety of behaviors, including multiple patterns, bifur-
cations, intermittency, hysteresis, . . . and even so-called de-
terministic chaos.

That coordinated actions might be addressed in the lan-
guage of self-organization was suggested some years ago
(Haken, 1977/1983b; Kugler, Kelso, & Turvey, 1980). An
explicit theoretical treatment of spontaneous pattern forma-
tion in human behavior followed the discovery of phase
transitions in studies of rhythmic bimanual movement pat-
terns (Kelso, 1984). In this situation, the relative phase, 0,
among the components was identified as a relevant collective
variable characterizing different ordered patterns (in-phase
and anti-phase), bistable in one regime and monostable in
another. Theoretically predicted features of nonequilibrium
phase transitions (Haken, Kelso, & Bunz, 1985; Schoner,
Haken, & Kelso, 1986), indicative of loss of stability, accom-
panied the shift from one pattern (anti-phase) to the other
(in-phase), including enhanced fluctuations of relative phase
(Kelso & Scholz, 1985; Kelso, Scholz, & Schoner, 1986) and
growth in relaxation time, defined as the time it takes to
return to the coordination pattern after a small perturbation
(Scholz & Kelso, 1989; Scholz, Kelso, & Schoner, 1987).
Predicted features of the transient switching process itself,
such as switching time and its distribution, were also con-
firmed in experiments on spontaneous (Scholz & Kelso, 1989;
Scholz et al., 1987) and intentional switching (Kelso, Scholz,
& Schoner, 1988; Scholz & Kelso, 1990; Schoner & Kelso,
1988a).

The concepts and tools of nonequilibrium phase transitions
have been demonstrated to provide a foundation for under-
standing behavioral pattern, its stability and change in a
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variety of experimental model systems on several levels of
description (for recent examples, see Kelso, Delcolle, &
Schoner. 1990; R. C. Schmidt, Carello, & Turvey, 1990;
Tuller & Kelso, 1991). In this article we extend the approach
to the experimental study of an essential feature of living
things, namely, their ability to change behavioral pattern
according to environmental requirements or tasks to be
learned. For the present purposes, learning is defined as a
relatively permanent change in behavior in the direction of a
to-be-learned pattern specified by the environment.

In the dynamic pattern perspective, the key to understand-
ing learning lies in the joint concepts of intrinsic dynamics
and behavioral information (e.g., Schoner & Kelso, 1988b).
The former construct applies to situations in which behavioral
patterns arise spontaneously as a result of nonspecific changes
in a control parameter (such as the movement frequency in
the case of bimanual coordination). The nature of these
intrinsic dynamics must be established in order to know what
can be modified or what can be learned. The concept of
intrinsic dynamics offers a way to operationalize an issue that
learning theorists have historically emphasized but have not
been able to do much about, namely, that organisms acquire
new forms of skilled behavior on the background of already
existing capacities. The initial state seldom, if ever, corre-
sponds to a disordered random network but is already ordered
in some way. The concept of intrinsic dynamics, basically the
layout of attractors (or phase diagram) of the collective vari-
able dynamics, thus allows (a) any initial patterned state to
be defined prior to learning, and (b) a study of how these
dynamics evolve in time as a new task is learned.' As we shall
see, predictions regarding the evolution of an individual sub-
ject's learning behavior follow from knowledge of the collec-
tive variable dynamics, which constitute a kind of baseline
signature. Note that the term intrinsic dynamics is not to be
equated with innate biological constraints but rather reflects
capacities that exist at the time a new task is to be learned.

In this sense, the present approach offers an interesting
point of departure from the views of the ethologists (e.g.,
Tinbergen, 1951), who stressed that learning must be preceded
by a study of innate mechanisms, expressions of which, called
fixed action patterns, were difficult to measure objectively.
Instead, we provide an operational means to identify patterns
and their dynamics using phase transitions as an entry point.
A strong point of conceptual agreement, however, is that
learning involves a "secondary modification" (Tinbergen,
1951, p. 6) of these so-called intrinsic dynamics. Psychology,
for the most part, equates for the initial state by adopting as
arbitrary a learning task as possible but avoids a direct con-
frontation with the issue itself. At other levels of description,
the idea of intrinsic dynamics is consistent with evidence for
spontaneous movements in early embryonic development
that coincide with rhythmical activity in spinal cord neurons
(Hamburger, 1970), as well as with evidence for neuronal
circuits for central pattern generation (Grillner, 1975).

The second cornerstone of the approach, behavioral infor-
mation, constitutes the influence of specific parameters on the
collective variable dynamics. As an expression of environ-
mental or task requirements, for example, behavioral infor-
mation is part of the dynamics attracting the order parameter

toward a required behavioral pattern. By definition, behav-
ioral information is measured by the same type of collective
variables that are used to characterize performed coordination
patterns. Learning, in the dynamic pattern framework, is the
process by which environmental behavioral information de-
fining a pattern to be learned becomes memorized behavioral
information. A coordination pattern is learned to the extent
that the intrinsic dynamics are modified in the direction of
the to-be-learned pattern. Once learning is achieved, the mem-
orized pattern constitutes an attractor of the behavioral pat-
tern dynamics (see Schoner, 1989; Schoner & Kelso, 1988c,
1988d).

To see the interplay between intrinsic dynamics and behav-
ioral information consider two sets of experiments that pro-
vide the backdrop for the present research (Tuller & Kelso,
1989; Yamanishi, Kawato, & Suzuki, 1980). Both deal with
the concrete case of coordination of bimanual rhythmic
movement. Thus, the behavior is a coordination pattern
defined by stable and reproducible timing relationships be-
tween the system's components, in this case homologous
fingers. In the Tuller and Kelso study, two visual metronomes,
one for each finger, served to specify a temporal order. Fre-
quency was fixed and the relative phase between the metro-
nomes varied, thereby constituting a continuously available,
environmentally specified pattern for the subject to match.
Yamanishi et al. had subjects practice several such phasing
patterns until a criterion level of performance was reached.
That is, Yamanishi et al. required subjects to produce a
memorized relative phase, whereas Tuller and Kelso kept
environmental information available at all times. Regardless
of the procedure, two robust results emerged. First, the ob-
served pattern (the actual relative phase produced) was per-
formed best when the task requirement corresponded to one
of the intrinsic patterns (in-phase or anti-phase). Moreover,
when the task required other relative phasing values, system-
atic deviation in the direction of the intrinsic patterns oc-
curred. Second, the variability of the performed phasing pat-
tern was minimal in the two intrinsic patterns and larger at
intermediate conditions (coined the "seagull effect" by Kelso,
Schoner, Scholz, & Haken, 1987, because of the characteristic
M-shaped curve, reminiscent of the seabird in flight). The
main point, however, is that performance is not simply better

1 The term phase diagram derives from thermodynamics. More
generally, a phase diagram defines regions in parameter space that do
not exhibit qualitative changes of the system's dynamics (hence,
similar phases in the thermodynamic context), as well as the bound-
aries across which such changes occur (hence, phase transitions).
Mathematicians typically describe such qualitative changes in terms
of bifurcations, whereas physicists tend to stick to the term phase
transitions. In this article we use these expressions interchangeably.
In nonlinear dynamical systems, change can be continuous or quali-
tative depending on the region in parameter space occupied. We use
the image of attractor layout synonymously with phase diagram in
this article in order to avoid confusion with the collective variable of
our experimental system, relative phase, <t>, which is a relative timing
variable expressing the coordination between active components.
However, it is important to note that a typical attractor layout, or
phase diagram, may contain attractive, repelling, and saddle points
that occupy basins and "separatrices" (e.g., Abraham & Shaw, 1982).



BEHAVIORAL ATTRACTORS AND LEARNING 405

(small error, low variability) for in-phase and anti-phase pat-
terns, but that other nearby phasings are biased or attracted
toward these stable states.

The foregoing results were modeled theoretically by
Schoner and Kelso (1988c, 1988d) at the level of both the
relative phasing patterns and the component oscillators. In
the Schoner-Kelso model, behavioral information, a relative
phase required by either the environment, i/*env (as in Tuller
& Kelso, 1989), or by memory, \f/mem (as in Yamanishi et al.,
1980), acts on the pattern dynamics attracting the order
parameter toward the required pattern. The two main exper-
imental findings are accommodated as follows: When the
intrinsic dynamics and behavioral information cooperate (i.e.,
the required pattern corresponds to one of the attractors for
in-phase and anti-phase), the resulting state is highly stable,
whereas when they compete, fluctuations occur and the re-
sulting state is much less stable. In other words, the extent to
which behavioral information cooperates or competes with
the intrinsic dynamics determines the behavioral patterns
observed.

An intuitive way to observe cooperative and competitive
effects between behavioral information and the intrinsic dy-
namics is provided in Figure 1. Implementing a mathematical
model means mapping reproducibly observed patterns (i.e.,
those that occur independent of initial conditions) onto at-
tractors of a dynamical model (i.e., the asymptotically stable
solutions of the collective variable equation of motion). The
concrete model of the intrinsic dynamics (Haken et al., 1985),
that is, a dynamical description in terms of relative phase
between the oscillatory components without specific behav-
ioral information, is defined by a vector field (a differential
equation) expressing the rate of change in relative phase, </>,
as a function of the derivative of its potential, V(ij>):

Intrinsic dynamics

dV(<t>)
(1)

where F(c6) — —a cos(c/>) — b cos(2<£) and \/Q^ is Gaussian
white noise of strength Q. Noise is introduced in Equation 1
because all real systems described by low-dimensional dynam-
ics are coupled to many subsystems at a more microscopic
level (e.g., in the present case at a neuromuscular level), which
act as stochastic forces on the collective variable, c/>. One may
view noise as a continuously applied perturbation that pro-
duces deviations from the attractor state. Such fluctuations
are conceptually important in dynamical modeling of phase
transition or bifurcation (see Footnote 1) phenomena and are
essential in effecting transitions (Schoner et al., 1986). Intui-
tively, fluctuations test the stability of an attractive state and
allow the discovery of new (or other) available states.

Complying with periodicity and symmetry requirements,
Equation 1 captures the observed, so-called pitchfork bifur-
cation, namely, a bistable regime below the critical point and
a monostable regime beyond it. Thus, for 0 < a < 4b, two
stable states 4> = 0° and 0 = ± 180° exist, whereas for a > 4b
> 0, only 4> = 0° remains stable. Local measures of the in-
phase and anti-phase modes (Kelso & Scholz, 1985; Kelso et
al., 1986; Scholz et al., 1987) allow for the easy determination
of the a, b, and Q parameters in Equation 1 (Schoner et al.,
1986).
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Figure 1. Visualization of the potential ( V ( < j > ) ) of the pattern dynam-
ics. (In Panel A. the potential of the intrinsic dynamics is displayed
in the bistable regime, using Equation 1 with a and b = 1 Hz. In
Panel B, requiring a pattern introduces behavioral information acting
at $ = 0° [D], t = 180° [*], and $ = 90° [•], using Equation 2 with a
and ft = 1 Hz and c = 20 Hz.)

Panel A of Figure 1 plots the potential corresponding to
Equation 1 in the bistable regime of the intrinsic dynamics.
The relative stability of the two attractors at 0° and 180° is
reflected by the depth of each well, and their attraction is
reflected by the slope at each point of the curve. Such a picture
makes it clear how the system will eventually relax into one
of the two attractors as long as the initial condition is in the
basin of attraction of one of the modes. Note that <j> = 90°
and its symmetry partner (<f> = 270° = -90°) are unstable
fixed points of the intrinsic dynamics. Any small perturbation
causes the system to relax to one of the stable patterns.

The model, when environmental information specifying a
required relative phase, \f/, between the pacing stimuli is
included, reads as follows:

(2)
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where now \\ = V(4>) - c cos((<£ - ^)/2). V(<t>) is the potential
pertaining to the intrinsic dynamics given in Equation 1, and
the second term is the simplest function (conforming with
certain periodicity requirements, see Schoner & Kelso, 1988c)
that attracts the relative phase toward the required phasing.
Note that this new term breaks the 0 «-» — 0 symmetry just as
the metronomic pacing does in the experimental model sys-
tem. The parameter c represents the strength of environmental
information on the intrinsic dynamics and can again be
measured experimentally (Schoner & Kelso, 1988c). Panel B
of Figure 1 plots the potential of Equation 2 for three required
relative phases, 0°, 90°, and 180° (D. •. and * curves, respec-
tively). Using model parameters corresponding to the intrinsic
dynamics and a value of the parameter c consistent with
Tuller and Kelso's (1989) data, two features emerge clearly.
On the one hand, when the required relative phase coincides
with one of the stable intrinsic patterns—namely, $ = 0° or
180°—the minimum of the potential is exactly at the required
relative phase, and its shape is well-articulated (less so for </>
= 180° than for <f> = 0°, reflecting the differential stability of
these two states). This case represents the cooperation between
extrinsic requirements and intrinsic dynamics. On the other
hand, if the required relative phase does not correspond to
one of the intrinsic patterns—for instance, \j/ = 90°—a com-
petition between the two forces pulls the minimum away from
the required relative phase (see the • curve of Figure 1, Panel
B). The potential is deformed, and a wider, less articulated
minimum results because of the competitive interaction be-
tween the intrinsic dynamics and the behavioral information.

This conceptualization opens a window into learning. Con-
sider the case where a subject must learn a phasing pattern
specified environmentally (e.g., i/w = 90°) that does not
correspond to either of the intrinsically stable patterns. As
this new relative phase is learned, the influence of the initially
bistable dynamics attracting the system to in-phase or anti-
phase patterns dwindles, because of the progressively over-
whelming attraction by the pattern being memorized (t/wm).
Thus, with the passage from environmental to memorized
information, a phase transition in learning is predicted. In
particular, the least stable of the two intrinsic patterns, the
anti-phase state, should lose stability as the strength of mem-
orized information increases. This should take the form of a
qualitative change in the pattern dynamics and the emergence
of a new behavioral attractor corresponding to the learned
pattern (Schoner, 1989; Schoner & Kelso, 1988c).

We may summarize the present approach to learning in the
form of a set of questions and their proposed answers.

1. What is learned? Here we provide a means for evalu-
ating the existing structure (initial state of the behavioral
pattern dynamics) before exposure to a new task. Each indi-
vidual possesses his or her own intrinsic dynamics, which
may reflect contributions from ancestry and prior experience.
By determining the phase diagram prior to any practice, it is
possible to identify individual constraints that may exist before
the learning process begins. By the same token, the dynamics
of learning itself may be evaluated (e.g., continuous versus
abrupt transitions, multistability, loss of stability) by probing
the phase diagram in time as practice proceeds. Thus, the
evolution of the learning process, seen as a specific modifica-

tion of the intrinsic dynamics, may be studied directly, not
simply as improvements in performance in a single task.

2. What form does the learning process take? By probing
the behavioral pattern dynamics, a full view is provided of
how an already organized structure evolves toward new (or
different) forms of behavior, informing as to how such struc-
tural alterations are at the origin of the observed change in
behavior. Learning, in the present model system, may involve
an order-to-order transition, a qualitative change in the phase
diagram. This is a far cry from the "acquisition" of habits and
associations through repetition that have tended to dominate,
in one way or another, theories of learning. More modern
information-processing and feedback models of skill acquisi-
tion that incorporate storage and retrieval stages (e.g., Wei-
ford, 1976) assume that gradual changes occur in an under-
lying mental schema. The present approach may be inter-
preted as an operationalization of the schema concept in
terms of the interplay between dynamical processes (e.g.,
competition and cooperation between behavioral information
and intrinsic dynamics), the consequence of which defines
the nature of change.

3. What mechanisms and principles govern changes due to
learning? Whether some tasks are learned more easily than
others (e.g., in terms of rate of learning and performance
efficiency) depends on the extent to which behavioral infor-
mation cooperates or competes with the intrinsic dynamics.2

If for some reason the pattern to be learned coincides with
one of the intrinsically stable patterns, then cooperative proc-
esses dominate, performance will improve rapidly, and no
phase transition is initially predicted. If the behavioral require-
ments conflict with the initial pattern intrinsic dynamics,
then, as the strength of memorized information increases, the
less stable pattern will lose stability, and a phase transition
will be seen.

The following experiment constitutes an effort to study
learning in the context of this deductive, dynamic pattern
approach. The acquisition process of the behavior in question,
learning a single relative phase that may or may not corre-
spond to one of the intrinsic patterns, is evaluated as it
proceeds in real time. Probes of the phase diagram are con-
ducted periodically to look for predicted qualitative (and
corresponding quantitative) evidence for changes in the pat-
tern dynamics. Other issues, such as the reason for persistence
of learning over time and the system's ability to generalize to
other unpracticed patterns, are addressed in the General Dis-
cussion section.

Method

The learning procedure entailed five consecutive daily sessions in
which the same required pattern was practiced repeatedly, with
knowledge of results given after every trial. In between learning trials,
the phase diagram (a set of relative phasing patterns between 0° and
180°) was systematically probed, providing an image of the individ-

2 This is the reason why the concept of intrinsic dynamics is so
central to the present approach. Without knowledge of the system's
initial pattern dynamics, change due to cooperative or competitive
processes is impossible to interpret.
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ual's intrinsic dynamics at that moment in time. One week later, a
follow-up session was given in order to investigate the expected long-
term effects of practice.

Subjects

Five subjects (4 women and 1 man, mean age = 22.3 years)
participated in the experiment. All were right-handed for writing and
were paid $50 after completion of the entire experiment. Two subjects
(B.A. and J.T.) did not complete the entire session on Day 1 because
of compelling time constraints.

Apparatus

Subjects were seated in front of a black board displaying a "visual
metronome" similar to that used by Yamanishi et al. (1980) and
Tuller and Kelso (1989). It consisted of two light-emitting diodes
(LED) that were placed 8 cm apart at gaze height, forming a visual
angle of about 5°. The onset of each LED was individually controlled
through a microcomputer (a single light pulse lasted 40 ms), so that
different relative phases (RP) between LED onsets were possible. To
define RP in this experiment, the right LED onset served as the
reference; thus, a positive RP meant that the left LED onset lagged
the right LED onset in time, and conversely. The subject's hands
were slipped into a bimanual finger apparatus, which allowed flexion-
extension movements of the index fingers about the metacarpo-
phalangeal joint to be monitored through the rotation of two coaxial
potentiometers. The fingers could freely oscillate in the horizontal
plane within their natural anatomical boundaries (i.e., no abutment
and negligible friction). The visual metronome signals and the output
from the potentiometers were digitized in real time through a mini-
computer (sampling frequency: 200 Hz per channel). A connected
workstation returned knowledge of results to the subject on a screen
located beside the visual metronome.

Procedure

The specific task requirements were similar to those imposed in
the experiments by Yamanishi et al. (1980) and Tuller and Kelso
(1989). Subjects were instructed to flex each finger in temporal
coincidence with the onset of the ipsilateral LED. No other constraint
on motion was imposed, such as a required amplitude, but subjects
were asked to produce movements as smoothly and regularly as
possible.

On the first day, prior to any experimental practice trial, subjects
were acquainted with the task and the apparatus through informal
familiarization, performing various finger movements according to
the metronome. However, these patterns were different in both
phasing and frequency from those used in the actual experiment.

A typical daily session comprised three blocks of five learning
trials, in which a required RP of 90° was practiced. Each learning
trial lasted 20 s, and the metronome frequency was set to 1.75 Hz.
This frequency was chosen as a value at which multistability of finger
patterns is observed (i.e., above about 2.2 Hz, only the 0° pattern is
stable). Moreover, the frequency was high enough to prevent subjects
from responding reactively to each LED pulse by an independent
finger flexion; rather, it induced them to perform the task by coupling
the fingers with the metronome. In other words, subjects had to
generate a coordinated phasing pattern that eventually matched the
required RP. After each learning trial, qualitative and quantitative
knowledge of results about produced RP and pattern synchronization
were provided to the subjects, and their performance was described
and discussed accordingly.

At the beginning and end of each daily session, as well as between
training blocks, a scanning run was carried out in order to probe the
current phase diagram (i.e., there were four scanning runs per day).
During each scanning run, the required RP was progressively in-
creased from 0° (simultaneous blink of the two LEDs) to 180°
(alternate blink) by 12 discrete steps of 15°. The plateau duration for
each required RP was 20 s. Each step in required RP was signaled to
the subject by an auditory tone. The metronome frequency was
identical to that of the learning trials, namely, 1.75 Hz. It is important
to emphasize that no knowledge of results about performance was
given during or after the scanning runs.

In the follow-up session (7 days after the last learning session), two
recall trials were administered, separated by a conventional scanning
run. In a recall trial subjects had to reproduce from memory the
pattern required in the learning trials (i.e., RP = 90°) for 1 min. A
central LED was blinked at a frequency of 1.75 Hz for pacing
purposes. No information pertaining to the required RP or actual
performance was provided. The longer trial duration was to increase
chances of detecting any drift in performance with time, that is, to
assess pattern stability over a reasonable time span.

Measures

The main dependent variable was a point estimate of the actually
produced RP, as illustrated in Figure 2. The time difference between
the occurrence of maximal flexion of the left finger (?urget on the lower
curve) and that of the right finger (/0 on the upper curve) closest in
time was first calculated. This duration was expressed in degrees
relative to the period of the right finger cycle (Preference — to', see complete
formula in Figure 2). This method yields an RP that ranges between
— 180° and 180°, where a positive value indicates that the left finger
lags with respect to the right finger, and vice versa. Although such a
point estimate does not reflect the average RP over a complete cycle
because of probable asymmetries and irregularities in actual motion,
it precisely assesses the effects of the task requirements on behavior—
namely, to flex each finger synchronously with the respective LED.
Moreover, it can be shown (e.g., Kelso & Schoner, 1988) that such a
measure adequately captures the instantaneous relative timing be-
tween the moving components.
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Figure 2. Calculation of the point-estimated relative phase (RP; see
text for details).
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To assess synchronization of the produced phasing pattern with
the metronome, the same formula as in Figure 2 was applied to
compute the RP between LEDs and fingers, namely, lag. Lag was
arbitrarily defined with respect to the leading events of both patterns,
the right LED onset and the maximal flexion of the right finger being
the reference events for the metronome and the finger patterns,
respectively. Accordingly, a positive lag indicates that the finger
pattern lags behind the metronome, and vice versa. Note that the left
finger lag with respect to its LED is easily computed using lag and
between-finger RP.

Figure 3 reproduces an actual knowledge-of-results display after a
learning trial. In the bottom window of the screen, the time series of
both finger motions are drawn, along with the onsets of the right
metronome LED (i.e., the leading LED used for lag calculation). In
the upper window, the produced relative phase and lag are displayed
as a function of time. At the bottom of the screen, some relevant
statistics of these cycle-by-cycle measurements over a trial were also
furnished in order to quantify improvement in performance across
trials. In the instance illustrated in Figure 3, the subject produced a
fairly stable pattern at about 104° of RP, with synchronization in-

creasing from about 130° of lag to a small lead of about 40° at the
end of the trial.

Results and Discussion

We first present the data on practice, scanning, and recall.
Then we try to establish the relationship between these results
in terms of learning as a long-term modification of the intrin-
sic dynamics. Finally, we provide more support for this con-
tention by focusing on specific features pertaining to individ-
ual differences among subjects.

Learning Task

A picture of changes in performance with practice is pro-
vided in Panel A of Figure 4. The upper curves (solid lines)
and lower curves (dotted lines) represent the mean RP within
a trial and its standard deviation, respectively, collapsed across
subjects. The scores are plotted as a function of practice trials
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Figure 3. Display for knowledge of results after a learning trial. (In the bottom window, the time series
of the right [solid line] and left [dashed line] finger movements and of the right LED level [dotted line]
are displayed for a typical run. In the top window, the corresponding cycle-by-cycle relative phase [solid
line] and lag [dashed line] are plotted as a function of time. The mean and standard deviation of relative
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with respect to the metronome.)
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and are joined together within each day of training. In both
graphs, the vertical bars indicate the variability across subjects
(i.e., ±1 SD). The graphs displayed in Panel A of Figure 4
present several characteristic features of classical "learning
curves" as practice of the 90° pattern proceeds from Day 1
through Day 5. Mean produced RP (upper curves) progres-
sively reaches the required RP of 90° with practice, although
some fluctuations still remain across trials after 5 days of
practice. Mean within-trial SD (lower curves) gradually de-
creases by an average amount of 50%. Meanwhile, the be-
tween-subject SD (denoted by the vertical bars) diminishes
substantially for both scores, suggesting that a decrease in
pattern variability occurs for all subjects. Very roughly, both
the mean RP and its SD have stabilized by the first 2 days of
practice.

Over successive days, decreases in within-trial variability go
along with a reduction in fluctuations across trials for both
mean RP and SD. Such fluctuations are presented in Table
1, operationalized by the SD of within-trial mean RP and SD

Table 1
Across-Trial Fluctuations of the Mean and the Standard
Deviation of Relative Phase as a Function of Day and
Subject
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Figure 4. Effects of learning in the learning and scanning tasks over
the 5 days of practice, averaged across subjects (vertical bars encom-
pass ± 1 between-subject SD). (Panel A presents the average within-
trial mean [upper solid line] and SD [lower dotted line] of produced
relative phase [RP] as a function of practice and recall trials. Panel B
displays the average first, last, and recall phase diagrams. Within-
plateau mean [upper solid line] and SD [lower dotted line] of delta
RP [error between produced and required relative phase] are plotted
as a function of the required relative phase, stepped by 15° between
plateaus.)

Subject
B.A.

J.T.

M.S.

S.B.

T.M.

Day
1
2
3
4
5

1
2
3
4
5

1
2
3
4
5

1
2
3
4
5

1
2
3
4
5

n

10
15
15
15
15

10
15
15
15
15

15
15
15
15
15

15
15
15
15
15

15
15
15
15
15

M

15.29
21.63
13.87
7.09
7.64

54.20
40.08
19.41
19.79
12.76

22.39
16.46
13.94
9.27
22.57
9.45a

48.72
14.49
12.75
12.08
6.05

24.46
7.86
9.63
12.10
13.03

SD

15.22
13.72
14.37
2.91
1.89

20.56
11.93
7.86
9.38
6.58

11.89
3.89
2.74
3.37
28.38
5.88a

18.88
15.85
4.29
3.14
3.29

8.92
3.54
3.16
3.45
2.73

1 If Trial 11 is suppressed.

over the 15 trials constituting each daily session. Results in
Table 1 indicate that for all subjects, fluctuations of mean
and SD within a day diminish with practice by more than
70% between Day 1 and Day 5. Contrasting with this general
tendency, the large fluctuations exhibited by Subject M.S. on
Day 5 are mostly due to a single trial (i.e., Trial 11), in which
the finger oscillations were not frequency-locked (right finger
frequency = 1.84 Hz; left finger frequency = 1.72 Hz). As a
result, a highly variable RP was produced, ranging between
-180° and 180°. If this trial is omitted from the calculations,
the across-trial fluctuations of mean RP and its SD are more
in keeping with those of the other subjects. This trial was thus
omitted from all subsequent analyses, because RP makes no
sense without frequency-locking between the two compo-
nents. A one-way multivariate analysis of variance (MAN-
OVA) with repeated measures on day confirmed the decrease
in across-trial fluctuations for mean RP and SD, Fs(4, 16) =
5.25 and 6.34, respectively, ps < .01. For both dependent
measures, post hoc analyses revealed significant differences
between Day 1 and Days 4 and 5, .Fs(l, 4) ranging between
8.91 and 40.67, ps<.05.

However, the foregoing results deserve a careful look. First,
as indicated earlier, most of the improvements in performance
take place in the first 2 days. Changes in mean RP and SD
occur mainly during this interval (see Panel A of Figure 4),
along with a sharp reduction in within-day fluctuations for
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both variables (see Table 1). Second, large differences among
individuals are obviously downplayed in this overall analysis.
A MANOVA (Subject x Day x Trial) with repeated measures
on day and trial showed that the three-way interaction was
significant for both mean RP and SD, fs(144, 550) = 13.48
and 6.69, both ps < .01, respectively. We shall dissect this
interaction when we examine individual subjects' perform-
ance later.

Scanning Task

By gradually varying required RP from 0° to 180°, we aimed
to establish the phase diagram of the underlying dynamics. In
order to sketch changes over the entire experiment that were
due to practice, Panel B of Figure 4 displays results, averaged
across subjects, obtained during the first and last scanning
probe (i.e., before and after practice), along with those per-
taining to the recall session (left, middle, and right parts of
Figure 4, Panel B, respectively). Each part contains two series
of curves. The upper group (solid lines) plots the mean delta
RP as a function of the required RP. Delta RP is the difference
between the actually produced RP and the required RP. One
can interpret delta RP as an error variable that takes on a
systematic structure depending on the required RP. When
required RP is overestimated (i.e., produced RP is larger than
required RP), delta RP has a positive value, and conversely.
Note that if the intrinsic dynamics do not come into play,
actual RP would perfectly match required RP; thus, mean
delta RP would be a flat curve lying on the zero (dashed) line.
The lower graphs (dotted lines) in Figure 4, Panel B, display
the corresponding SD of delta RP as a function of required
RP, collapsed across subjects. In both curves, the vertical bars
encompass ± 1 between-subjects SD.

For the first scanning run (left part of Panel B), mean delta
RP exhibits a humped curve as a function of required RP;
that is, it is lowest when required RP is 0° or 180°. Between-
subject variability (vertical bars) is also lowest around these
two values of required RP. The negative slope between 135°
and 180° of required RP reflects attraction to the anti-phase
pattern, because intermediate RPs are overshot in the direc-
tion of 180°. Relative phase variability (bottom curves) is
lowest at 0° and 180° and increases markedly at intermediate
values, indicating that in-phase and anti-phase patterns are
the most stable, with the latter more variable than the former.
Also, between-subject variability is smallest at these required
phasings. The picture concerning the first phase diagram is in
keeping with the so-called "seagull effect." However, the
apparent absence of attraction (a negative slope) of nearby
phasing patterns toward 0° results partly from the averaging
across subjects and partly from the experimental design. Be-
cause the required phasing was always increased in an ascend-
ing order, with an auditory tone signaling each step, subjects
may have been induced to escape the in-phase pattern as soon
as a difference in required RP was perceived or cued. By
contrast, in both the Tuller and Kelso (1989) and Yamanishi
et a). (1980) studies, in which a negative slope at 0° was
observed, the required RP was assigned randomly in separate
experimental runs.

An altogether different phase diagram emerges in the last
probe performed at the end of Day 5 (middle part of Figure
4, Panel B). Mean delta RP is still low around 0° and 180°,
but now also around 90°. Moreover, attraction to the 90°
pattern is clearly demonstrated by the negative slope of curves
in the interval from approximately 60° to 105° of required
RP. At higher required RPs, the larger variability across
subjects (vertical bars) suggests a more differentiated behavior,
which we will discuss in a following section. The correspond-
ing bottom curves show that the 0° pattern is still stable,
because the SD is low. Between 60° and 105° of required RP
(while the 90° pattern is actually being performed), SD is
equally low. For required phasings greater than 105°, however,
SD becomes larger for all subjects, along with an enhancement
in the variability across subjects. This finding suggests partial
loss of stability of the anti-phase pattern, leading to erratic
performance (i.e., inconsistent across trials and subjects) when
the required RP is above 120°.

Our theoretical interpretation of the. results in Figure 4,
Panel B, is that the initial intrinsic dynamics underwent a
dramatic change over days of practice: From initially bistable
dynamics, in which the 0° and 180° patterns constitute behav-
ioral attractors, tristable dynamics emerge, in which the 90°
pattern becomes an attractor as well. This qualitative altera-
tion of the phase diagram constitutes a phase transition on
the time scale of the experiment. Such an interpretation is
corroborated by statistical analysis. Delta RP scores within
the plateaus closest to the 0°, 90°, and 180° patterns were
pooled into three intervals, from 0° to 30°, from 75° to 105°,
and from 150° to 180°, respectively, representing, as it were,
the basins of attraction surrounding the patterns.3 Day x
Pattern MANOVAs with repeated measures on day and pat-
tern were carried out for the mean and the SD of delta RP.
The results for mean delta RP show a significant Day X
Pattern interaction, F(2,28) = 5.SS,p < .01. Post hoc contrasts
revealed that mean delta RP is different between days for the
90° pattern, F(l, 14) = 6.25, p < .02, whereas no significant
difference is revealed for the other patterns. The Day x
Pattern interaction is also significant for the SD of delta RP,
F(2, 28) = 5.45, p < .01, in addition to the main effect of
day, F ( l , 14) = 25.36, p < .01, which reflects the general
decrease in pattern variability. Post hoc analysis of the inter-
action revealed a significant day effect only for the 0° and the
90° patterns, Fs( 1, 14) = 21.16 and 4.57, ps < .05, respectively,
supporting the interpretation that an attractor emerged at the
90° pattern between the first and last day of practice. Small
group differences in mean and SD of delta RP between the
first and last probes for the 0° pattern, Fs(l, 4) = 12.07 and
10.19, ps < .05, are not readily interpretable. Here again,
however, we are temporarily postponing consideration of
differences among subjects.

Recall

To test whether changes in performance persist, we consid-
ered the results of the recall session, administered 1 week after

3 We thank an anonymous reviewer for suggesting this analysis.
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the last day of practice (i.e., Day 5). In the right-hand part of
Panel A of Figure 4, the within-trial mean and SD of produced
RP during the two trials of the recall session are plotted,
slightly separated from the rest of the graph. The scores seem
quite similar between the 15 learning trials of Day 5 and the
2 recall trials. A repeated measures MANOVA revealed a
significant day effect for both dependent variables, Fs(5, 95)
= 10.06 and 4.57, ps < .01, respectively. Post hoc analysis
indicated that the mean RP was significantly different between
Day 1 and the following days, Fs( 1, 19) ranging between 12.89
and 23.40, ps < .01, and between Day 1 and recall, F(\, 19)
= 17.68, p < .01. Thus, there were no significant differences
across days, including recall, after Day 1. The SD followed
along similar lines. Variability decreased across days, with
Day 5 different from Day 1 and Day 2, Fs( 1, 19) = 11 .11 and
17.31, ps < .01, respectively. Recall was not significantly
different from the last day of practice. To sum up, the long
time interval between learning and recall sessions did not
entail changes in performance beyond the normal fluctuations
during the preceding days. Practice therefore led to fairly long-
lasting changes in performance, consistent with the interpre-
tation that the required RP of 90° was learned.

In the right-hand side of Figure 4, Panel B, the last scanning
probe on Day 5 (middle graphs) can be compared with the
probe carried out during the recall session (right graphs).
Globally, no major changes can be detected after an interval
of 7 days. The main features of the typical layout on Day 5
are still present in the recall session: stability of the 0° pattern
(low SD); attraction of produced RP to 90° for the mid-range
required RPs (negative slope); stability of the 90° pattern itself
(low SD); and relative instability of the 180° pattern (high SD
and large between-subject variations). Statistical analysis con-
firms this picture. Day x Pattern MANOVAs with repeated
measures on both factors were carried out for delta RP and
its SD. Both dependent measures showed the trivial one-way
effect of pattern, Fs(2, 28) = 6.66 and 9.63, ps < .01. Notably,
the Day x Pattern interaction was not significant. Hence,
there is no suggestion of any change in the produced RP as a
function of the variation in the required phasing between Day
5 and the recall session. We may interpret this result to mean
that the attractor layout following extended practice remains
unaffected over time. Indeed, post hoc contrasts failed to
show any significant difference in mean delta RP and SD
between probes for all three patterns, and the pattern of
contrasts between the recall and the first probes is exactly the
same as that described previously for the probe on Day 5.
These results strongly suggest that the 5 days of practice led
to a modification of the dynamics that was not temporary,
but persisted over a fairly long time span.

Comparison Between Learning and Scanning

If both tasks involved the same underlying dynamics, we
would expect the large relative phase (RP) fluctuations pro-
duced across trials and days during the learning trials to
correspond to comparable changes in performance when 90°
RP was required in the scanning trials. Such a comparison is
drawn in Panel A of Figures 5-7 for 3 prototypical subjects,
T.M., M.S., and J.T., respectively (the performances of Sub-

jects B.A. and S.B.. which are not reported, are similar to that
of M.S.). In each panel, upper curves (solid lines) and lower
curves (dotted lines) display mean produced RP and its SD,
respectively. Performance in the learning trials is coded by a
star (*). The squared curves (D) correspond to the mean and
SD produced within the 90° required RP plateau of a probe.
Each probe is plotted at the same position on the abscissa as
the learning trial closest in time. Panel A of Figures 5-7
indicate a close covariation between learning and scanning
scores across trials and days. In particular, the large jumps in
produced RP between days in the learning task tend to
coincide with similar variations in the scanning task. Thus,
within-day as well as across-day fluctuations, which unfold
on two separate time scales, are captured coherently, suggest-
ing that both tasks are tapping into the same dynamics. Such
an interpretation is also supported by a regression analysis
performed on the mean RP and SD, collapsed across subjects,
R2= .342, p< .01,andfl 2 = .291, p < .01, respectively. In a
subject-by-subject analysis, the covariation for the mean and
the SD was significant for all subjects except B.A.

Another feature of the comparison between learning and
scanning performance is the difference among subjects during
the first 2 days. Roughly speaking, M.S., S.B., and B.A. (see
Figure 6, Panel A, for an illustration) were able to execute a
90° pattern in a fairly precise manner quite early in practice.
In contrast, T.M. and J.T. (Figure 5, Panel A, and Figure 7,
Panel A, respectively) did so only during Day 2. If we assume
the existence of common dynamics for both tasks, the various
behaviors exhibited on the very first learning trial must reflect
differences in the initial intrinsic dynamics. We examine this
issue next.

Individual Differences in Learning: Cooperative and
Competitive Effects

One central theme of our approach is that all observed
behavioral patterns and their dynamics emerge ultimately
from the interplay between competitive and cooperative proc-
esses. In particular, the outcome of learning is in large part
determined by competitive processes. That is, behavioral in-
formation—whether environmental (before much practice of
the required pattern has occurred) or memorized (following
practice)-—"wins out" over preexisting tendencies to produce
preferred phase relations (intrinsic dynamics). In each case,
the alteration may take the form of a phase transition, or
bifurcation, although the reasons for the phase transition are
different.

Complete representations of the evolution of the attractor
layout with learning is provided for the 3 typical subjects S.B.,
M.S., and J.T. in Panels B and C of Figures 5, 6, and 7,
respectively. In Panel B, mean delta RP (i.e., produced minus
required RP) and the related SD are plotted as a function of
required RP on the first two (left graphs) and last two (right
graphs) scanning runs. In Panel C, the evolution of the
attractor layout with practice is rendered in a more flowing
fashion. Mean RP within a plateau is plotted for each probe
as a function of the total number of probes. Actually, the
abscissa roughly matches the ordinal scale of the learning
trials used in Panel A. A cubic polynomial interpolation of
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x.̂ .̂ V'-î  "; ' • - - - - - . ̂ . ..». - - -x- - - ; " "xV

^ " ̂ ^^^^^^^TT ̂y x» * * xT"^^^''^7^""--—--^-^-— i" ""

DAY1 DAY 2 DAY 3 DAY 4 DAY 5

3 4 8 12 16

"^

1

20

APPROX. TIME (scanning probe)

Figure 5. Individual performance for Subject T.M. (Panel A draws a comparison between learning
and scanning performance when a 90° phasing is required: within-trial [*] and within-plateau [D] mean
[upper solid line] and SD [lower dotted line] of produced relative phase [RP] when 90° RP is required
in the learning and scanning trials, respectively. The scanning scores are plotted at the same position
on the approximate time abscissa as the learning trial closest in time. Panel B presents the phase diagram
on the first two [Day I] and the last two [Day 5] scanning probes. [For Day 1: Probe 1 = *, Probe 2 =
D. For Day 5: Probe 3 = +, Probe 4 = A.] Within-plateau mean [upper solid line] and SD [lower dotted
line] of delta RP are plotted as a function of the required relative phase. Panel C illustrates the "flow"
of the attractor layout as learning proceeds. The 13 within-plateau relative phase means are plotted for
each scanning probe as a function of the total number of probes, along with the respective cubic
interpolation [see text for details].)
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Figure 6. Individual performance for Subject M.S. (Panel A draws a comparison between learning
and scanning performance when a 90° phasing is required: within-trial [*] and within-plateau [D] mean
[upper solid line] and SD [lower dotted line] of produced relative phase [RP] when 90° RP is required
in the learning and scanning trials, respectively. The scanning scores are plotted at the same position
on the approximate time abscissa as the learning trial closest in time. Panel B presents the phase diagram
on the first two [Day 1] and the last two [Day 5] scanning probes. [For Day 1: Probe 1 = *, Probe 2 =
D. For Day 5: Probe 3 = +, Probe 4 = A.] Within-plateau mean [upper solid line] and SD [lower dotted
line] of delta RP are plotted as a function of the required relative phase. Panel C illustrates the "flow"
of the attractor layout as learning proceeds. The 13 within-plateau relative phase means are plotted for
each scanning probe as a function of the total number of probes, along with the respective cubic
interpolation [see text for details].)
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Figure 7. Individual performance for Subject J.T. (Panel A draws a comparison between learning and
scanning performance when a 90° phasing is required: within-trial [*] and within-plateau [D] mean
[upper solid line] and SD [lower dotted line] of produced relative phase [RP] when 90° RP is required
in the learning and scanning trials, respectively. The scanning scores are plotted at the same position
on the approximate time abscissa as the learning trial closest in time. Panel B presents the phase diagram
on the first two [Day 1 ] and the last two [Day 5] scanning probes. [For Day 1: Probe 1 = *, Probe 2 =
D. For Day 5: Probe 3 = +, Probe 4 = A.] Within-plateau mean [upper solid line] and SD [lower dotted
line] of delta RP are plotted as a function of the required relative phase. Panel C illustrates the "flow"
of the attractor layout as learning proceeds. The 13 within-plateau relative phase means are plotted for
each scanning probe as a function of the total number of probes, along with the respective cubic
interpolation [see text for details].)
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the mean RP produced in response to each required RP is
drawn so that the trend may be followed across scanning runs.
These interpolation curves are coded by their line type within
adjacent phasing-requirements intervals (i.e., 0°-15°, 30°-60°,
75°-105°, 120°-150°, and 165°-180°) to contrast the trends.
If performance were perfect (i.e., no influence of the intrinsic
dynamics), the mean produced RPs for a given probe would
precisely match each phasing requirement. Thus, if no change
in the dynamics occurred with practice, 13 equidistant hori-
zontal lines would be plotted. Conversely, the clustering of
produced RPs suggests the presence of a basin of attraction.
Changes with time in the attractor layout may then be ob-
served, such as drift of an attractor (fluctuation of a bunch of
curves) and broadening or narrowing of its basin (convergence
or divergence of curves, respectively). Although we recognize
that such a procedure is statistically dubious because of the
fake abscissa, it nevertheless provides a useful and insightful
glimpse into how the attractor layout evolves over the time
scale of the experiment.

Individual subjects can be classified roughly according to
whether they display predominantly cooperative or competi-
tive dynamics in the first practice trials. Subjects T.M. and
M.S. belong to the latter category, although they exhibit
qualitatively different initial intrinsic dynamics. For Subject
T.M., the first probe (* curves in Figure 5, Panel B) suggests
the presence of two attractors at 0° and 180°, whereas Subject
M.S. (Figure 6, Panel B) exhibits tristable dynamics, with a
middle stable pattern located at about 115°. In both subjects,
enhanced variability in the first scan as well as the first
learning trials reflects competition between environmental
information requiring a phasing of 90° and a bias to produce
higher relative phases than required (see Panel A of Figures 5
and 6). With practice, T.M. is already showing evidence of an
attractor at 90° (negative slope and reduced SD) on the second
probe (D curves in Figure 5, Panel B), so that by the end of
learning (right curves), this pattern has become an attractor
of the dynamics, and the 180° pattern is destabilized. Such a
phase transition from bistable to tristable dynamics stems
from competition between environmental behavioral infor-
mation and the intrinsic dynamics. For Subject M.S., such
competition involves the rapid shift of the middle pattern
toward the task requirement, as indicated already in the
second probe (cf. * and D graphs in Figure 6, Panel B). From
then on, environmental behavioral information and the pat-
tern dynamics cooperate to stabilize the 90° pattern. With
further practice, the final dynamics become almost monosta-
ble, with delta RP showing a negative slope and a minimal
SD all the way across the interval between 45° and 180° and
intersecting the zero axis at 90° (right graphs in Figure 6,
Panel B). The positive and negative shifts in delta RP for,
respectively, 0° and 180°. suggest also that these intrinsic
patterns are less attractive than before. Such a transition now
results from competition between the waning influence of
initially stable patterns (0° and 180°) and the growing influ-
ence of memorized information (i.e., 90°).

The "flow" of the dynamics (Panel C of Figures 5 and 6) is
consistent with the foregoing interpretation. Both subjects
exhibit quite dramatic modification of the phase diagram with
learning, the actual form depending on the interplay between

task requirements and the preferred patterns. Theoretically,
the removal (M.S.) or addition (T.M.) of an attractor is due
to competition between behavioral information (environmen-
tal or memorized) and the initial intrinsic dynamics.

A glimpse into how learning affects the pattern dynamics
in "real time" is afforded by comparing scanning and learning
tasks. For T.M., the first time at which a substantial cluster is
formed around 90° in a scanning run, accompanied by a near
disappearance of the 180° pattern, coincides exactly with the
first time at which the 90° pattern is produced in the learning
task (cf. the arrows in Figure 5, Panels A and C). The
simultaneous drop in variability (see lower curves in Figure
5, Panel A) may reflect the new cooperation developed be-
tween environmental behavioral information and the pattern
dynamics.

For Subjects S.B. and B.A. (data not given), the initial
dynamics are similar to those of M.S., whereas the final
dynamics are comparable to those of T.M., that is, roughly
speaking, always exhibiting attractors at 0°, 90°, and 180° (see
left curves in Figure 5 and right curves in Figure 6, respec-
tively, for an illustration). However, S.B. and B.A. appear to
arrive at these final dynamics through a slightly different
mechanism. For both subjects, practice bolsters the stabiliza-
tion of the 90° pattern, which eventually becomes equivalent
to the 0° and 180° patterns. Because the departure between
required and initially available behavioral patterns is small,
there is strong cooperation between behavioral information
and the intrinsic dynamics.

Although Subject J.T. eventually displays tristable initial
dynamics (see left part of Panels B and C of Figure 7),
performance in the learning task is extremely variable over
the first 2 days. Most produced RPs sit around 90° and 190°,
with fewer scores at intermediate values. Closer examination
shows that intermediate RPs are not produced as stable pat-
terns, but rather result from the relative number of cycles
produced at 90° and 180° during a given trial. In Figure 8,
Panel A, we show the frequency distribution of produced RP
binned in adjacent intervals of 15° for three groups of trials
on Day 1. Trials with intermediate produced RP values (i.e.,
about 135°) and large SD (i.e., Trials 4, 7, and 9) constitute a
first group. The second pool contains Trials 1, 3, 8, and 10,
which exhibit a mean RP of about 90°. The last pool comprises
the other trials, whose mean produced RP is about 190°. The
bimodal distribution of trials with intermediate RP values
(solid line) overlaps with the two unimodal distributions of
the other groups. This suggests that whatever the actual
within-trial mean, a large proportion of the produced RPs are
centered about 90° or 180°-200°. In Figure 8, Panels B and C
are displayed two examples of such switching behavior over
a similar 20-s period. Each presents the time series of produced
RP and the angular displacements of the fingers over time in
the bottom curves (the right finger corresponds to the dotted
line). Note that in the top curves, the vertical axis scales RP
between -360° and 360°, so that RP over time is drawn twice,
avoiding wrapping about the 0° value. Panel B shows learning
Trial 9 on Day 1, whereas Panel C displays part of the first
scanning run on Day 3 for a required RP of 90°. Both panels
reveal a coherent picture, the RP jumping between 90° and
180° and sitting there for a while (about 4-5 s), with rare visits
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Figure 8. Switching behavior in Subject J.T. (In Panel A, the overall frequency distribution of the
cycle-by-cycle relative phase in the trials of Day 1 is pooled as a function of their mean [see text for
details]. In Panel B, the upper window displays the time series of relative phase in a selected learning
trial. The lower window plots the corresponding finger movements [see text for details]. Panel C does
the same as Panel B but for the 90° required relative phase plateau in a selected scanning probe.)
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to 0°. An interpretation of this consistent behavior is that the
equilibration time of the system (Tequ)—the time it takes a
stochastic system to reach a stationary probability distribution
(e.g., Schoner et al., 1986)—is close to the duration of a
scanning plateau or a learning trial. Thus, the system may be
in the global stability regime where it visits its various attrac-
tors, so that spontaneous switches among stable patterns may
occur within this time interval.

General Discussion

The coordinated patterns produced by animals and people
may be understood in the language of nonlinear, dissipative
dynamical systems." In dynamic pattern theory (e.g., Kelso &
Schoner, 1987; Schoner & Kelso, 1988e), following synerget-
ics (Haken, 1977/1983b), patterns of coordination on a cho-
sen level of description are characterized by collective vari-
ables or order parameters. These collective variables capture
the ordering relations between interacting components and
thus reflect the underlying neural organization. The pattern
dynamics can be determined as equations of motion of the
collective variables (cf. Equations 1 and 2). In particular,
observable (i.e., reproducible, stationary over a certain time
scale) behavioral patterns are mapped onto attractors of the
order parameter dynamics whose stability can be measured.
Boundary conditions (environmental, task, or energetic con-
straints) act as parameters on the collective dynamics. Such
parameters may be nonspecific, simply moving the system
through a sequence of patterns, or specific, requiring a partic-
ular pattern. Pattern change, continuous or abrupt, is tied to
the essential nonlinearity of the system and may take the
form of bifurcations (qualitative changes in the phase diagram
or attractor layout). Typical predictions about change, such
as enhancement of fluctuations, critical slowing down, and
the distribution of switching times, can be detected experi-
mentally if careful attention is paid to time scales. Depending
on the nature of the dynamics (stable or unstable fixed points
of the collective variable, saddles, limit cycles, etc.), jumping
among basins of attraction may occur.

Building on previous work on an experimental model sys-
tem in which multistability and pattern transitions were ob-
served, we identified the relative phase, <t>, as a relevant
collective variable characterizing the coordination patterns
between two components moving rhythmically. In the present
experiment we studied how the relative phase dynamics
evolved according to the specific behavioral requirement of
learning a relative phase that did not, at first blush, correspond
to the intrinsic dynamics. In particular, we tested the predic-
tion that phase transitions in learning may occur, seen as
qualitative changes in the phase diagram or attractor layout.
Analysis of performance changes over time in conjunction
with periodic probes of the phase diagram provided strong
support for this prediction. Depending on the initial intrinsic
dynamics for a given subject, multiple attractors of the behav-
ioral pattern dynamics were seen to evolve, sometimes accom-
panied by loss of stability of one of the intrinsic patterns (see
Panel C of Figures 5, 6, and 7). As evident in recall perform-
ance (see Figure 4), such modification of the dynamics per-
sisted beyond local within-day and across-day time scales. The

fact that learned patterns persisted over time attests to the
crucial concept of stability of the underlying collective vari-
able dynamics.

The present approach includes an entire layer of dynamics
(the intrinsic pattern dynamics) often omitted from formal
learning theories. Not only does the theory predict nonequi-
librium phase transitions in learning, but there are also meth-
odological implications for the study of learning. First, a
central emphasis is placed on identifying any existing spati-
otemporal pattern dynamics before the introduction of a
learning task. In essence, we assume that subjects' perform-
ance on the initial scan reflects the collection of past experi-
ences, natural tendencies, and so forth that might contribute
to his or her ability to produce rhythmic behavioral patterns.
Depending on these intrinsic dynamics, an individual sub-
ject's consequent behavior may be predicted. For example, if
the 90° pattern is not stable initially relative to in-phase and
anti-phase patterns, a phase transition is predicted. Competi-
tion between external behavioral requirements and the intrin-
sic dynamics is at the heart of this pattern change (Kelso &
DeGuzman, 1988; Schoner, 1989; Schoner & Kelso, 1988c,
1988d). However, if for some reason, the 90° pattern is part
of the phase diagram, no phase transition is expected initially.
Instead, as practice proceeds, consolidation of the 90° pattern
occurs. The mesh between behavioral information and the
intrinsic dynamics is thereby strengthened because of their
cooperation. Further practice may lead to phase transitions,
following the destabilization of the anti-phase pattern (shown
experimentally here) and eventually, even of the in-phase
pattern (predicted by the theory). A putative sign of the latter
bifurcation may be the marked shift in RP between the first
and last probes for the 0° requirement (see Figure 4, Panel B).

In our final remarks we address some of the typical ques-
tions raised about the present approach.5 We use this format
as a way to locate the present approach with reference to
others and to briefly enlarge upon its implications.

1. Does learning always involve a phase transition? As
theory predicts and as we have shown, whether qualitative
change in the behavioral pattern occurs or not depends on
the relation between the initial intrinsic dynamics and behav-
ioral information. A general problem with determining
whether phase transitions constitute an important mechanism
of learning surrounds the issue of how, in the first place, one
defines relevant variables (characteristic of the "state") of a
complex system on a chosen level of description. On the
relatively rapid time scale of behavioral performance in
rhythmic tasks, we have used qualitative change induced by
nonspecific parameter changes as a means of clearly distin-
guishing one behavior from another. Relative phase proves to

4 Mathematically, dissipative systems are non-Hamiltonian sys-
tems, that is, characterized by a reduction of their volume in phase
space. Phenomenologically, dissipative systems, unlike conservative
systems, eventually relax into a stable state from different initial
states. Dissipation is then equivalent to attraction, which can take
several forms, for instance, attraction to a point, to a periodic orbit,
or to chaos.

5 We are indebted to an anonymous reviewer for formulating these
questions.
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be a relevant collective variable in our experimental model
system, which can then be tracked during the longer time
scale of learning. Thus, phase transitions on the short time
scale of behavior are instrumental in discovering whether
phase transitions occur on the longer time scale of learning.
The former are used as a methodological strategy for identi-
fying collective variables, that is, the "what" in the question
of "what changes" when learning requirements are imposed.
A similar approach may be taken for other learning tasks on
other levels of description, in which, of course, relative phase
may be quite irrelevant as an essential variable. Our point is
that the observables may differ for different functional tasks,
but the principles, we hope, will be the same.

Although the identification of a phase transition mecha-
nism is what sets the present approach off from others, as we
have stressed, not all learning need involve a phase transition.
For example, in preliminary work (Zanone & Kelso, in press),
we have studied the ability to learn a pattern at \j/ - 135°. The
reason for this choice with a given subject was because an
initial probe of the phase diagram showed evidence of tristable
dynamics (i.e., 0°, 90°, and 180°). We found that the initially
stable pattern at 90° was gradually shifted toward the required
phasing pattern of 135°. Thus, it may be that when <f> = 90°
is already a stable pattern, the resulting changes due to learn-
ing are continuous, not abrupt. The distance in collective
variable space between behavioral requirements and intrinsi-
cally preferred patterns appears to determine the nature of
change. However, simply because learning may take a contin-
uous and gradual form does not invalidate a dynamical de-
scription. Indeed, it is the existence of qualitative change in
the dynamics that renders gradual change more easily inter-
pretable.

2. Is it possible that by looking at the intrinsic dynamics
one can make predictions about what is learnable and what is
not? Depending on the nature of the intrinsic dynamics,
some tasks may be more easily learned than others. If by
chance or design, a task requirement happens to match the
intrinsic dynamics, or vice versa, learning is likely to be rapid
because of cooperation. Our choice of ^ = 90° was theoreti-
cally motivated by the fact that 90° is an unstable fixed point
of the collective variable dynamics, separating the two basins
of attraction for 0 = 0° and 4> = 180° (see Figure 1, Panel A).
Thus, the task as originally conceived was to make an unstable
fixed point stable through learning, thereby promoting qual-
itative changes in the phase diagram, theoretically through
the mechanism of competition.

The general class of tasks investigated here involves 1:1
frequency- and phase-locking. An extended version of the
theory considers empirically observed frequency relations that
are not 1:1 (DeGuzman & Kelso, 1991; Kelso & DeGuzman,
1988). In both cases, whether a pattern is easily produced or
not depends on its stability. Some stability regions (e.g., 1:1
or 2:1) are large and easy to access; others are extremely small
and difficult to access (e.g., 3:5 or 8:13). One reason why
musicians must practice so-called difficult rhythms stems
from this differential stability. "Errors" can occur, seen as
jumps from less stable (e.g., 5:2 or 4:3) to more stable (e.g.,
2:1 or 1:1) frequency relations. In theory, differential stability
may also explain why, in practice, only a few rhythmic

patterns are typically observed, although all patterns are the-
oretically learnable (see Deutsch, 1983; Jagacinski, Marsh-
burn, Klapp, & Jones, 1988; Povel, 1981). We believe that
such results may be enormously informative about the design
of complex nervous systems.

3. What does a "phase transition in learning" mean as
opposed to simply "learning will occur'? As we have empha-
sized, a phase transition, or bifurcation, refers to qualitative
change in the dynamics. By establishing the phase diagram of
the pattern dynamics, our approach affords a novel picture of
transfer or generalization. Thus, we look not only at one
trained phasing pattern ("simple" learning) but also at the
effects of one trained relative phase on all phases. And, we
would add, the approach allows one to see if and how preex-
isting preferred relative phasing patterns (so-called intrinsic
dynamics) are modified in the process of learning a new
phase. From the resulting pattern we infer the nature of
change (abrupt vs. continuous) and the underlying processes
(cooperation and competition). Moreover, it is possible that
creating a novel attractor at a to-be-learned pattern will gen-
eralize to other patterns that have not been practiced at all.
First examples of such transfer (Zanone & Kelso, in press)
suggest that the relative phase symmetric (e.g., </> = 270°) to
the one learned (e.g., 4> — 90°) can become an attractor of the
pattern dynamics. Such results indicate that dynamical prin-
ciples, such as preservation of symmetry, may be relevant to
the transferability to other tasks and set the present approach
apart from others.

4. Are the intrinsic dynamics an accident of experience?
Why are 0° and 180° favored? These questions are pertinent
in this context because the intrinsic dynamics persist through-
out the learning period except for temporary losses of the
anti-phase pattern. Our framework makes no claims about
the intrinsic dynamics' being the result of experience or innate
factors. On the other hand, the tendency for phase and
frequency synchronization is ubiquitous in natural systems
and can be found at many levels of observation. For example,
remarkable parallels exist between the present work on
rhythmic movement tasks in humans and research on central
pattern generators in invertebrate and vertebrate neural net-
works (e.g., Cohen, Rossignol, & Grillner, 1988). Even cells
in mammalian visual cortex (e.g., Gray, Konig, Engel, &
Singer, 1989) have been found to display phase and frequency
synchronization. In-phase and anti-phase patterns constitute
stable collective modes of nonlinear coupled oscillators and
probably reflect a quite fundamental way to coordinate indi-
vidual components whose behavior evolves in time (e.g.,
Kelso, DeGuzman, & Holroyd, in press). Just as stability of
the resonances explains the 3:2 relationship between the
planet Mercury's orbital and rotational periods (Stewart,
1989), limited forms of stability may underlie the pervasive-
ness of simple mode-locking in behavioral and neural systems
(von Hoist, 1939/1973).

5. What would the intrinsic dynamics look like for a learning
task more standard than bimanual coordination? Science
always chooses specific cases on which to build theoretical
understanding, and some concrete cases are bound to be better
than others. Bimanual coordination happens to have provided
a useful window into the abstract, level-independent princi-
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pies of coordination that have proven generalizable to a
variety of other experimental systems (including the present
case of learning) and levels of description. It may not be
considered a "standard" task, but neither, one could argue,
was rolling a ball down an inclined plane.

On the other hand, it may not be too adventurous to
speculate that learning to read and learning to talk follow
along the lines we have described here for perception-action
pattern learning. For example, recent studies of speech per-
ception and production have demonstrated, following Stetson
(1951, cited in Kelso & Munhall, 1988), that phase transitions
occur from syllables such as "ape" to "pay" as speaking rate
is systematically increased (e.g., Tuller & Kelso, 1991). The
transition is invariably from a vowel-consonant (VC) to a
consonant-vowel (CV) form, and not vice versa. It is inter-
esting, once again, that it is the relative timing among glottal
and oral articulators that distinguishes VC and CV syllables,
both in production and perception. Such CV forms also
predominate in infant babbling, constituting a unique set of
"favorite sounds" (Ferguson, 1979) or "movement patterns"
(Locke, 1983). Work by Vihman and colleagues (see Vihman,
1991, for a review) has established that the phonetic charac-
teristics of early words are highly similar to each individual
child's babble. Indeed, the child apparently attempts to pro-
duce an adult form only when it matches or is close to one of
his or her own babbles. Thus, access to the world of language
appears to depend, in part, on these preferred perceptual-
motor patterns. Though the mapping must be only tentative,
we might say that babbling corresponds to a kind of intrinsic
dynamics that can be modified by the sounds of adult words,
acting as specific behavioral information on these dynamics.
Of course, the dimensions on which the intrinsic dynamics
and behavioral information are defined and whether phase
transitions occur during the process of phonetic development
remain very much open questions.

6. Would any other existing theory not make the same
predictions? It is possible to intuit that learning might in-
volve "phase transitions" in the vernacular sense, or even
"quantum leaps," or "insights," as in the case of Kohler's ape.
Such intuitions are undoubtedly useful and important to
initiate a line of investigation. But in the sense that the formal
mathematical aspects of the dynamic pattern approach to
learning have been fleshed out and operational tools devel-
oped to test specific predictions of the theory, the answer is
probably no.

As a viable alternative framework, we should look perhaps
to current research in artificial neural networks, which gives
learning and associative memory a high priority. Neural nets
that implement dynamical systems are also being used for
adaptive control and motor learning (e.g., Bullock & Gross-
berg, 1991; Jordan, 1990; Kawato, Furukawa, & Suzuki,
1987). The dynamics used are usually simple, such as relaxing
to fixed-point solutions, although some attention has been
given to temporal order in small neural networks using
periodic dynamics (Kleinfeld & Sompolinsky, 1989). Such
models are probably powerful enough to model the present
results, but they do not predict them. A reason could be that
many mathematical network models completely ignore the
biological components themselves or the behavioral patterns

that they exhibit (Abbott, 1990). In our language, the level of
the intrinsic pattern dynamics is missing. To the extent that
these nontrivial dynamics are ultimately responsible for pre-
dicted and observed transitions in learning, ignoring them
may leave an important gap.6 Such dynamics, as we stressed,
place constraints on what can be learned, if not in artificial,
at least in real, systems. Elsewhere, it has been shown that
intentional changes in performance are influenced by the
intrinsic pattern dynamics. Our results, along with the con-
cepts and tools used here, provide a framework for under-
standing skill learning as a modification of the intrinsic dy-
namics. Indeed, the interpretation of learning processes is
greatly enhanced when it is preceded by the identification of
collective variables for behavioral patterns and their (nonlin-
ear) dynamics.

6 Recently, Eimas and Galaburda (1990) made a similar point.
Referring to "molecular" associative conditioning in the gill ofAply-
sia, they pointed out that even these simple effects do not occur in
an unbiased "connectionist" arrangement of input, output, and hid-
den units, but rather presuppose an already complex initial state on
which only certain stimuli, and not others, are capable of evoking
certain responses.
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