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1 Introduction 

In coordinated movements typically several states related to different behav
ioral patterns can be found, e.g. different gaits of horses (Collins and Stewart 
1993, Schoner et al. 1990) or different configurations-' among the joints for 
trajectory formation tasks (Buchanan et al. 1997, Kelso et al. 1991). These 
states have d·ifferent stabilities dependent on external or internal control pa
rameters. When such control parameters are manipulated, coordination states 
may become unstable and the system exhibits a transition from one state to 
another. These phenomena have intensively been investigated experimentally 
and theoretically and mathematical models have been set up reproducing the 
experimentally observed coordination behavior as well as predicting new ef
fects (see (Haken 1996, Kelso 1995) for reviews). On the other hand, recent 
MEG and EEG experiments (Kelso et al. 1992, Wallenstein et al. 1995) have 
investigated the spatiotemporal brain dynamics during coordination of finger 
movements with external periodic stimuli. To accommodate these results, a 
mathematical phenomenological model was developed describing the on-going 
brain activity (Jirsa et al. 1994). In (Jirsa and Haken 1996a, 1996b) [Jirsa 
and Haken 1996a, Jirsa and Haken 1996bj a neurophysiologically motivated 
field theory of the spatiotemporal brain dynamics was elaborated which com
bined properties of neural ensembles, including their short- and long-range 
connections in the cortex, in addition to describing the interaction of func
tional units embedded into the neural sheet. This approach was applied to 
the brain-coordination experiment (Kelso et al. 1992) where the subject's 
task was to coordinate rhythmic behavior of a finger with an external acous
tic stimulus. During the experiment the MEG of the subject was recorded. 
Complex systems, such as the brain, have the general property that they 
perform low-dimensional behavior during transitions from one macroscopic 
state to another (Cross and Hohenberg 1993, Haken 1983, 1987). This type 
of behavior has also been found in the analyses (Fuchs et al. 1992, Jirsa et 
al. 1995) of the brain data from the coordination experiment in (Kelso et al. 
1992). On the basis of these analyses the phenomenological model in (Jirsa 
et al. 1994) describing the brain activity was derived qualitatively from the 
neurophysiologically motivated theory in (Jirsa and Haken 1996a, 1997). 

C. Uhl (ed.), Analysis  of  Neurophysiological  Brain Functioning
© Springer-Verlag Berlin Heidelberg 1999



108 Viktor K. Jirsa, J.A. Scott Kelso, and Armin Fuchs 

The goal of the present paper is to show how it may be possible to traverse 
levels of organization from the behavioral level to the brain level. For this 
purpose, we choose a bimanual coordination experiment (Kelso 1981,1984) in 
which a transition in coordinated behavior is observed between finger move
ments when a control parameter is changed. Along this example, we will 
treat the organization on the level of behavior (Sect. 2) and then make the 
the connection to the organization on the level of the brain (Sect. 3). 

2 The Level of Behavior 

Experimental studies by one of us (Kelso 1981,1984), as well as others (see e.g. 
(Carson et al. 1994) for a review) have shown that abrupt phase transitions 
occur in human finger movements under the influence of scalar changes in 
the cycling frequency. Below a critical cycling frequency two dynamical pat
terns or states are possible: An in-phase state where-the finger movements are 
symmetric and an anti-phase state where the finger movements are antisym
metric. Starting the finger movements in the anti-phase state and increasing 
the cycling frequency, a spontaneous transition from anti-phase to in-phase 
is observed at a critical frequency. Beyond this frequency only the in-phase 
state is stable. Further, it is experimentally found that the amplitude of the 
finger movements decreases when the cycling frequency is increased. 

In 1985 these phenomena were theoretically modeled by Haken, Kelso 
and Bunz (1985) by formulating a model system for the dynamics of the col
lective variable represented by the relative phase between the fingers. This 
model system was then used as a guide to establish a model for the dynam
ics of the component variables represented by the finger positions Xl and 
X2. These component variables perform an oscillatory behavior and interact 
nonlinearily. Two ordinary differential equations, again based on detailed ex
perimental results, describe the dynamics of the individual fingers with the 
amplitudes Xl and X2. This model system reads 

Xl + (Axi + Bxi -,)XI + .n2XI = (Xl - X2) (a + j3(XI - X2)2) (1) 

X2 + (Ax~ + Bx~ -,)X2 + .n2X2 = (X2 - xd (a + j3(XI - X2)2) (2) 

The left hand sides of (1), (2) deseribe the motion of the individual fingers, 
while the right hand sides describe the coupling. 

With the goal of connecting behavioral coordination dynamics (1) and (2) 
to brain dynamics we introduce an alternative description of these phenom
ena in terms of symmetric and antisymmetric modes. These modes directly 
correspond to the behavioral states of the system, for which we seek corre
spondence at the brain level. 

We define the following variables: 

(3) 
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These variables represent modes of behavior where ;j;+ corresponds to the 
symmetric (in-phase) mode and ;j;_ to the antisymmetric (anti-phase) mode. 
The back transformation onto the amplitudes of finger movement reads 

(4) 

In order to obtain the equations governing the dynamics of the new variables 
;j;+, ;j;_ we subtract and sum (1), (2), respectively, and obtain 

'':' :.. 2 - A a -3 -2 - B:..3 :..2 :.. 
'l/J+ - "f'l/J+ + Sl 'l/J+ + 12 at ('l/J+ + 3'l/J_ 'l/J+) + 4('l/J+ + 3'l/J_'l/J+) =-= 0 
'':' :.. 2 - A a -3 -2 -
'l/J- - "f'l/J- + Sl 'l/J- + 12 at('l/J- + 3'l/J+'l/J-) (5) 

:..3 :..2 :.. :.. _ 

+ !}('l/J- + 3'l/J+'l/J_) = 2'l/J_ (a + fN=-). 

The left hand sides of (5) represent fully symmetric-(with respect to the 
exchange of the indices + and -), nonlinearly coupled equations. The former 
coupling terIlls with a and {3 in the variables Xl, X2 now appear only in one 
equation solely in terms of the antisymmetric mode ;j;_. 

In order to treat the system (5) analytically we make the following ansatz: 

;j;+ = R+eiq,+eint + R+e-iq,+e- int 

;j;_ = R_eiq,-eint + R_e-iq,-e- int 

(6) 

(7) 

where R+, R_ denote real time dependent amplitudes and cli+, cli_ the cor
responding time dependent phases. Inserting this ansatz into (5) and per
forming two approximations well known in nonlinear oscillator theory (ro
tating wave approximation, slowly varying amplitude approximation, see e.g. 
(Haken (1983))) we obtain the following equations for the amplitudes 

R+ = hR+ - a(Sl) (R~ + 2R=- + R=- cos2(cli_ - cli+)) R+ 

R_ = hR- - a(Sl) (R=- + 2R! + R~ cos2(cli+ - cli_)) R_ + aR_ + (3R~ 
(8) 

and for the phases 

(9) 

(10) 

where a(Sl) = 1/8(A + 3BSl2 ). Defining the new variable ¢ = cli+ - cli_ we 
can rewrite (9), (10) as 

¢ = -a(Sl)(R! + R~) sin2¢ (11) 

which has the only stable solutions ¢ = ~, 3; for nontrivial amplitudes R+, 
R_. Thus (8) can be reduced to 
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8V 

8R+ 

. _ 1 () 2 2 3 _ 8V R_ - nR- - a n (R+ + R_) R_ + aR_ + f3R_ - - 8R_ 

(12) 

where the dynamics of R+, R_ can be expressed in terms of a gradient 
dynamics with the potential 

V = -~'Y(R! + R=-) + ~a(n) (R! + R=-)2 - ~aR=- - ~f3R~ (13) 

A linear stability analysis of (12) yields the same results as in (Haken et al. 
1985) and can be graphically presented in terms of the potential V in (13). In 
Fig. 1 (upper row) the potential V is plotted in dependence of R+ and R_ as 
the control parameter n increases from left to right. Here the R_-axis points 
out of the page. The corresponding isoclines of V are plotted below in arbi
trary units of R+, R_. Below the critical frequency'bistability is present (left 
two pictures), i.e. either the symmetric or the antisymmetric mode is present. 
At the critical frequency nc (third picture) the antisymmetric mode becomes 
unstable and only the symmetric mode remains for higher frequencies (right 
picture). 

R R R 
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\ 
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.0.5 ·0.5 .0.5 ·o,s 
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Fig. 1. The potential V is plotted (top row) in dependence of R+ and R_ as the 
frequency increases from left to right. The axis of R_ points out of the page. The 
scale on the axes is in arbitrary units. The isoclines of the potential V are plotted 
in dependence of the oscillator amplitudes R+, R_. The plus sign marks a local 
maximum, the minus sign a local minimum 
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3 The Level of Brain 

In the framework of this paper we will use the behavioral mode system (5) 
as a guideline to traverse scales of organization from the behavioral level to 
the brain level. First we briefly review a field theoretical description of neural 
activity recently developed by Jirsa & Haken (1996a, 1996b, 1997), then we 
specify the neural field equation with respect to the bimanual coordination 
experiment and discuss it in detail. 

3.1 Field Theoretical Description of Neural Activity 

Let us consider a (n - 1 )-dimensional closed surface r representing the neo
cortex in a n-dimensional space. This medium r shall consist of neural en
sembles to which we assign two state variables describing their activity: Den
dritic currents generated by ,active synapses cause waves ·ohxtracellular fields 
which can be measured by the EEG (Freeman 1992) and intracellular fields 
measurable by the MEG (Williamson and Kaufman 1987). Action potentials 
generated at the somas of neurons correspond to pulses. We call the magni
tude of the neural ensemble average of the waves the wave activity 'l/Jj(x, t) 
with j = e, i where the indices distinguish excitatory and inhibitory activity 
and the magnitude of the neural ensemble average of the pulses the pulse 
activity 'l/Jj (x, t) with j = E, I distinguishing excitatory and inhibitory pulses. 
The location in r is denoted by x, the time point by t. These scalar quantities 
are related to each other via conversion operations (Freeman 1992) which we 
define as 

'l/Jj(X,t) = l dX fJ(x,X)Hj(x,X,t) , (14) 

where j = e, i, E, I. Here the function Hj(x, X, t) represents the output of 
a conversion operation and fJ (x, X) the corresponding distribution function 
depending on the spatial connectivity. From experimental results of Free
man (1992) it is known that the conversion from wave to pulse is sigmoidal 
within a neural ensemble, however the conversion from pulse to wave is also 
sigmoidal, but constrained to a linear small-signal range. Assuming that ex
citatory neurons only have excitatory syp-apses, inhibitory neurons only in
hibitory synapses (which is generally true (Abeles 1991)) we obtain the fol
lowing relations between conversion output and pulses 

[ ( Ix-XI)] ( IX-XI) He(x, X, t) = S 'l/JE X, t - v ~ ae'l/JE X, t - v (15) 

[ ( Ix-XI)] ( IX-XI) Hj(x, X, t) = S 'l/Jr X, t - v ~ aj'l/Jr X, t - v (16) 

and between conversion output and waves 
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[ ( Ix-XI) ( IX-XI) HE(x, X, t) = Se 'l/Je X, t - V - 'l/Ji X, t - V 

( IX-XI)] + Pe X,t - V ' (17) 

[ ( IX-XI) ( IX-XI) H1(x, X, t) = Si 'l/Je X, t - V - 'l/Ji X, t - V 

( Ix-XI)] +Pi X,t - V (18) 

External inputpj(x, t) is realized such that afferent fibers make synaptic con
nections and thus Pj (x, t) appears only in (17), (18). Here ae , ai are constant 
parameters denoting synaptic weights, V the propagation velocity and S, Sj 
the sigmoid functions of a class j ensemble. 

Let us now make the following considerations: We are interested in a 
spatial scale of several cm and temporal scale of 100 msec which is relevant 
in EEG and MEG. Intracortical fibers (excitatory and inhibitory) typically 
have a length of 0.1 cm, corticocortical (only excitatory) fiberlengths range 
from about 1 cm to 20 cm (Nunez 1995). Cortical propagation velocities have 
a wide range from 0.2 m/sec (Miller 1987) up to 6-9 m/sec (Nunez 1995). 
With an average velocity of 1 m/sec this yields propagation delays of 1 msec 
for the intracortical fibers and 10 msec to 200 msec for the corticocortical 
fibers. Synaptic delays and refractory times are of the order 1 msec, the neu
ronal membrane constant is in the range of several msec (Braitenberg and 
Schuz 1991). From this brief summary we see that the spatial and temporal 
scales vary considerably. The distribution of the intracortical fibers is very 
homogeneous (Braitenberg and Schuz 1991), but the distribution of the cor
ticocortical fibers is not (estimates are that 40% of all possible corticortical 
connections are realized for the visual areas in the primate cerebral cortex 
(Felleman and Van Essen 1991)). We assume the corti co cortical fiber dis
tributions to be homogeneous as a first approximation. Using the discussed 
temporal and spatial hierarchies the dynamics of the system (14)-(18) can be 
systematically reduced (see (Jirsa and Haken 1996a,1996b,1997) for details): 
the fast dynamics « < 100 msec) becomes either instantaneous or can be 
eliminated and the spatial scales smaller than 1cm become point-like. Then 
the entire dynamics of the system can be described in terms of the slowest 
variable 'l/Je(x, t) and a modified external input now denoted by p(x, t). The 
dynamics of 'l/Je(x, t) is given by 

'l/Je(X, t) = ae 1r dX fe(x - X) (19) 

xSe [p 'l/Je (X, t _ I X ~ X I) + P (X, t _ I X ~ X I)] , 
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where p is a density of excitatory fibers, modified due to the elimination of the 
other variables. Note that from the equations (14)-(18) the models by Wilson 
& Cowan (1972,1973) in terms of pulse activities and by Nunez (1974,1995) 
in terms of wave activities can be derived and are connected by our approach. 

Until now the dimension of the cortical surface has been kept general. Here 
we want to specify n = 2, meaning that r represents a closed I-dimensional 
loop. Such a geometry has been reported by Nunez (Nunez 1995) to be a 
good approximation when macroscopic EEG dynamics is considered under 
more qualitative aspects of dynamics like changes of dispersion relations. In 
the following sections we will perform a low-dimensional mode decomposition 
in which case the chosen geometry suffices for a discussion of the temporal 
mode dynamics. Using the method of Green's functions (Jirsa and Haken 
1997) the above integral equation (19) can be rewritten as a nonlinear partial 
differential equation 

;j; + (w5 - v26) 'IjJ + 2wo7j; = ae (W5 + Wo :t) S[p 'IjJ(x, t) + p(x, t)] (20) 

where Wo = v/u and we dropped the indices e. Here we call 'IjJ(x, t) the neural 
field. The interaction of functional units with the cortical sheet r is repre
sented by the external input signals pj(x, t), where p(x, t) = Lj Pj(x, t) and 
the output signals ijjj(t). A functional unit can include subcortical structures 
such as the projections of the cerebellum on the cortex or specific functional 
areas like the motor cortex. Anatomically these areas are obviously defined 
via their afferent and efferent fibers connecting to the cortical sheet. In the 
context of the present theory dealing with dynamics on a larger spatiotempo
ral scale, i.e. wavelengths in the regime of several cm, it is more appropriate 
to identify the spatial localizations of the functional input units with the 
spatial structures which are generated by the time dependent input signals 
Zj(t), open to observation in the EEG/MEG. In the case of a finger move~ 
ment this spatial structure (3j(x) corresponds to the well-known dipolar mode 
in the EEG /MEG located over the contralateral motor areas. Thus such a 
functional input unit is defined as 

(21) 

Similarly, an output signal ijjj(t) sent to non-cortical areas is picked up from 
the cortical sheet according to 

ijjj(t) = £ dx (3j(x)'IjJ(x, t) , (22) 

where (3j(x) defines the spatial localization of the jth functional output unit. 
In summary, the field theoretical approach presented here aims at a de

scription of the spatiotemporal brain dynamics on the scale of several cm and 
100 msec. These scales emphasize the corticocortical connections and allow 
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the derivation of (19) in one field variable 'Ij;(x, t) governing the spatiotempo
ral dynamics. Focussing on the dynamical aspects of the interaction of only 
a few modes in the following sections, a cortical representation of a closed 
strip is chosen. 

3.2 Neural Field Theory of Bimanual Coordination 

The neural areas subserving bimanual coordination are numerous and di
verse. The cortex, through intracortical connections and long loop, reciprocal 
pathways to the basal ganglia and cerebellum, obviously plays a crucial role. 
Propriospinal and brainstem networks are also involved. Wiesendanger et al. 
(Wiesendanger et al. 1994) in a recent review of lesion studies in humans and 
non-human primates implicate lateral premotor cortex, supplementary motor 
area, parietal association cortex and the anterior corpus callosum (among oth
ers) in goal-directed bimanual coordination. Though many kinds of cortical 
lesions can affect bimanual movements, objective measures of spatiotempo
ral organization are rare in studies of patient populations. In the context of 
the present work, Thller & Kelso (1989) showed that in-phase and anti-phase 
movements of the fingers were preserved in split-brain patients. Other phase 
relations were much more difficult for split brains to produce compared to 
normal subjects. Anatomical and physiological evidence for bilateral control 
of each cortical area may explain why callosal damage and unilateral cortical 
lesions tend to produce only transient disturbances of bimanual coordination 
(Wiesendanger et al. 1994). 

For present purposes, we consider a simplified scheme in which cortical 
areas interact in a cooperative fashion to produce goal-directed bimanual co
ordination (see Fig. 2). Evidence for bilateral activation of primary motor 
cortices during a bimanual task in which both index fingers are simultane
ously moved (see e.g. (Kristeva et al. 1991)), is consistent with our double 
representation of "motor areas" in Fig. 2. Likewise, the presence of movement 
evoked fields in both postcentral cortices corresponding to reafferent activ
ity from the periphery during bimanual movements (Kristeva et al. 1991) 
justifies the two "sensorimotor areas" in our model. Thus, motor signals are 
conveyed from the motor areas in the cortical sheet to the individual fingers, 
sensorimotor signals carrying information about the finger movements are 
conveyed to the sensorimotor areas of the brain. Please note that we assign 
the same index l (r) to the left (right) finger and its contralateral hemisphere 
in order to keep the notation in the following mathematical treatment as sim
ple as possible. Here we deal with the following situation as shown in Fig. 2: 
two input units localized at (Jis (x) (left hemisphere, sensorimotor), (Jrs (x) 
(iight hemisphere, sensorimotor) and two output units localized at (Jlm(X) 
(left hemisphere, motor), (Jrm(x) (right hemisphere, motor) are embedded 
into a one-dimensional closed neural strip. The origin of the underlying coor
dinate system is located between the two hemispheres where L is the length 
of the neural strip. Anatomical considerations imply as a first approximation 
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Fig. 2. Two input units localized at f3ls (x) (sensorimotor, left hemisphere), f3rs (x) 
(sensorimotor, right hemisphere) and two output units localized at f3lm(X) (mo
tor, left hemisphere), f3rm(X) (motor, right hemisphere) are embedded into a 
one-dimensional closed neural strip whose activity is described by the field 'lj;(x, t) 

the following symmetries: 

f31s(X) = f3rs( -x) 
f31m(X) = f3rm( -x) 

(23) 

The output signal, here the motor field, is defined according to (22) and 
is conveyed to the corresponding finger where Zl(t) = Xl(t), zr(t) = X2(t) 
denote the extensions of the left and right finger movements, respectively. The 
motor movement Zj(t) with j = l, r shall be described phenomenologically as 
a function f of the mo~or field ijjj(t) and, in order to take phase shifts into 

account, its derivative ijjj(t): 

where f(ijjj(t),ijjj(t)) denotes a nonlinea: function which we expanded into 

a Taylor function in terms of ijjj (t) and ijj j (t) and truncated after the linear 
terms as an approximation. The constant fa describes a constant amplitude 
shift and can be set to zero for a rhythmic movement. See also (Jirsa and 
Haken 1997) for a treatment of the sensorimotor feedback loop in terms of 
driven oscillators. In the following discussion we will consider the limit case 
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h i- 0, h = o. A discussion of the other limit h = 0, h i- 0 gives analogeous 
results. With (22),(24) and h i- 0, h = 0 the sensorimotor feedback is now 
given by 

1L/2 

Pj(x, t) = (3js(x)Zj(t) = Co (3js(x) (3jm(x)'IjJ(x, t) dx 
-L/2 

(25) 

and the feedback loops of the motor and sensorimotor units are closed. 
We are now in a position to specify the field equation (20) as follows 

.. 2 2 . ( 2 B) 'IjJ+(wo-v 6)'IjJ+ 2wo'IjJ=ae wo+wOBt S[p'IjJ+PI(X,t)+Pr(X,t)]. (26) 

The field 'IjJ(x, t) can also always be written in terms of symmetric and anti
symmetric contributions 

11-
'IjJ(x, t) = 2 ('IjJ(x, t) + 'IjJ( -x, t)) + 2 ('IjJ(x, t) - 'IjJ( -x, t)) . (27) 

, , , " 
Vi v 

1/J+(x,t) ",-(x,t) 

Next, we make an assumption about the spatial pattern underlying the tem
poral dynamics of 'IjJ+(x, t) and 'IjJ-(x, t). In the bimanual coordination exper
iment a transition from one pattern to another is observed on the behavioral 
level. In this case the theory of dynamical systems, in particular synergetics 
(Haken (1983),1987), predicts low dimensional behavior of the system under 
consideration and we expect to observe low-dimensional transition phenom
ena on the brain level, too. Further, in previous analyses of brain-behavior 
experiments (Fuchs et al. 1992, Jirsa et al. 1995) involving behavioral tran
sitions during coordination with external stimuli low-dimensional spatiotem
poral brain dynamics was found and could be described in terms of two 
spatial modes. Here we deal with the different situation of the coordination 
of two limbs. But since a similar phase transition in behavior has also been 
observed, we assume to a first approximation that each contribution 'IjJ+(x, t) 
and 'IjJ-(x, t) is dominated by one spatial pattern and factorizes 

'IjJ+(x, t) ~ g+(x) 'IjJ+(t) 
'IjJ-(x, t) ~ g_(x) 'IjJ_(t) (28) 

if only standing waves are present. The assumption of two dominating spatial 
modes is crucial for the following mathematical analysis and experimentally 
easy to test. If this assumption is confirmed, higher order structures of the 
dynamics can be included following the lines of (Jirsa et al. 1995) in which the 
reproduction of the experimental spatiotemporal signal could be improved by 
adding more spatial modes whose temporal dynamics depends only on the 
dynamics of the prior modes. The ansatz (28) can also be expanded for higher 
dimensions or traveling waves, but first, this will increase the complexity of 
the analytical treatment considerably and second, in most cases it will not 
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lead to the same results as in the case of two dominating spatial modes. For 
these reasons the hypothesis (28) is the first to be tested experimentally. 

A complex system whose dynamics is governed by a nonlinear evolution 
law may perform phase transitions from one stationary state to another when 
a control parameter is varied. Close to the transition point the dynamics 
of this system is governed by the first leading orders of the nonlinearities 
(Haken (1983),1987). Here we express the sigmoid function S[n] by the logistic 
function 

1 1 
S[n] = 1 + exp (-4an) 1 + exp (4a) , (29) 

where a denotes the sensitivity coefficient of response of the corresponding 
neural population. We expand (29) into a Taylor series around n = 0 up to 
third order in n and obtain 

(30) 

which is a good approximation for values an smaller than 1. Projecting the 
neural field equation (26) onto g+(x) and g_(x) following the lines in (Jirsa 
and Haken 1996a,1997), we obtain 

4 3 3 2 
[aflO1f+ - Sa (1301f+ +3h21f_1f+] 

(31) 
4 3 3 2 

[af011f- - Sa (1031f- + 31211f+1f-] 

(32) 
where 

1L/2 
nl = w5 - v2 L.gi(x) dx 

-L/2 
with i = +,- (33) 

and the terms fij with i, j = 1,2,3 are constant parameters which are given 
in the appendix. 

So far we tackled the level of the brain, let us now traverse the scales of 
organization by referring back to the behavioral level where the equations 
governing the behavioral dynamics are known from (5). Here we take these 
equations as a guide to obtain conditions' which restrict the solution space of 
(31), (32). 

In (3) we expressed the behavioral modes in terms of finger displacements. 
With (24) we can express the behavioral modes in terms of the neural field 

j L/2 

;J;+(t) = Zl(t) + zr(t) = Co (f31m(X) + f3rm(x)) 1f(x, t) dx 
L/2 

(34) 

j L/2 

;J;-(t) = Zl(t) - zr(t) = Co (f31m(X) - f3rm(x)) 1f(x, t) dx 
L/2 

(35) 
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If we take our hypothesis (28) of two dominating spatial modes into account, 
the behavioral modes can be expressed as 

;jJ+(t) = Co 'IjJ+(t) lL/2 (Olm(X) + Orm(x)) g+(x) dx = c+'IjJ+(t) 
L/2 

l L/2 
;jJ-(t) = Co 'IjJ_(t) (Olm(X) - Orm(X)) g_(x) dx = c'IjJ-(t) 

L/2 

(36) 

(37) 

where c+, c_ are constant. In the present framework, it turns out that in the 
bimanual coordination case the symmetric (antisymmetric) behavioral mode 
is proportional to the symmetric (antisymmetric) brain mode. As a con
sequence the dynamical system (5) of the behavioral modes and the system 
(31), (32) ofthe brain modes should be equivalent. This requires w5 «w08/8t 
which implies on the considered time scales (see also (Jirsa and Haken 1997) 
where this limit was used) that the mean cortico<2ortical fiber length is large. 
We rewrite (31), (32) as 

(38) 

where 
b = 4/3aea3wo , = aeawoflO - 2wo 
a = 1/2aeawO(JOl - flO) 0 = -2aea3wo(J03 - !so) 

(39) 

The system (38) is structurally equivalent to the dynamical system (5) for 
the behavioral modes. Note that in the latter system the Rayleigh terms with 
the parameter B were introduced in order to obtain a frequency dependence 
of the oscillator amplitude (see (Haken et al. 1985)). An alternative way to 
achieve this dependence is to introduce frequency dependent parameters in 
(5), e.g. A(D) = A + 3BD2 or , = ,(D) which yields the same results as a 
Rayleigh term. If h2 = hi and D+ = D_, then the lhs of (38) represents 
a fully symmetric system with respect to the coupling terms. The rhs of the 
second equation in (38) is a consequence of the difference between the spatial 
overlap of functional units - symmetric brain mode and functional units -
antisymmetric brain mode. From the behavioral mode system (5) we know 
the necessary condition a < 0,0 >. 0 which leads to the nontrivial restriction 
fOl < ho, f03 < !so and implies a greater spatial overlap of the considered 
functional units with the symmetric brain mode. 

3.3 Numerical Treatment 

In order to illustrate our more general results of the previous section we choose 
a simple example for a specific set of brain modes and localized functional 
units. The motor and sensorimotor areas on the right hemisphere are localized 
as follows 
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(40) 

( 41) 

and satisfy the required anatomical symmetry (23). For reasons of simplicity 
we choose the motor and sensorimotor units on the same hemisphere to be 
identical in the numerical treatment. The sensorimotor feedback is specified 
for the limit, h =I- 0, h = 0, according to (24). We introduce a frequency 
dependent function 'Yo(Sl) into the linear damping Go(Sl) = 2wo + 'Yo(Sl) on 
the Ihs of (26) which causes a frequency dependence of the wave amplitude 
and thus a frequency dependence of the finger movements as experimen
tally observed. For 'Yo(Sl) = 0 the original field equation is present. In our 
specific example (40)-(41) the mean field ijJ(x, t), equivalent to the homoge
neous mode, has to r~main constant. To ensure this, we introduce a linear 
mean field damping ijJ(x, t) into (26). Using a semi-implicit Forward-Time
Central-Space procedure we integrate the field equation (26) numerically. The 
functional units are localized according to (40), (41) and the edges of the lo
calization functions were smoothed for reasons of numerical stability. Periodic 
boundaries were chosen. The parameters used in the numerical simulations 
are: Wo = 2n 0.1, v = 0.152, ae = 1, a = 0.4, P = 0.5, Co = 2, extension of 
the neural strip L = 1, spatial overlap of the localization functions E = 0.025. 
Here the space unit corresponds to 1 m and the time unit to 100 msec. This 
parameter range is realistic: the corticocortical propagation velocity v is in 
the 1 m/sec range, the extension of the neural sheet L is in the 1 m range 
and the long range connectivity a = v/wo is in the 10 cm range. 

In the bottom left corner of Fig. 3 the localization of the functions f3li (x), 
f3ri(X) with i = m, S is shown within the neural strip, above that the sym
metric mode 9+(X) and the antisymmetric mode 9-(X) are shown. The color 
code used is given in the second row on the Ihs. On the rhs of Fig. 3 four rows 
each consisting of a space-time plot and time series are given. In each space
time plot the color-coded field 'ljJ(x, t) is plotted where the spatial domain x is 
vertical and the temporal domain t horizontal as indicated by the arrows in 
the top left corner. In the graphs under the space-time plots the field 'ljJ(x, t) 
is projected onto the symmetric mode 9+(X) (blue line) and the antisym
metric mode 9-(X) (red line) plotted over time t (in sec). The first two rows 
describe the situation before the pretransition with 'Yo(Sl) = O. Two possible 
states are shown: In the top row the antisymmetric mode 9-(X) dominates; 
in the second row, it is the symmetric mode 9+ (x) that dominates. Increasing 
the damping to 'Yo(Sl) = 0.3, the antisymmetric mode becomes unstable and 
performs a transition to the symmetric state. This transition is shown in the 
third row. The symmetric mode remains stable in the posttransition regime 
as can be seen in the bottom row. Hence in the case E > 0, bistability is 
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Fig. 3. The overlap of the localization functions f3ij{X) is shown in the bottom left 
corner. The activity of the field 'IjJ{x, t) is plotted over the time t (horizontal) and the 
space x (vertical), together with the time series of the symmetric mode g+{x) (blue 
line) and the antisymmetric mode g_{x) (red line). The top two rows correspond 
to the pretransition region I'o{Q) = 0, the bottom two rows to the post transition 
region I'o{Q) = 0.3 

present in the pretransition regime and monostability in the posttransition 
regime. For E = 0 no transition is observed and bistability is preserved for 
the entire control parameter regime. 

3.4 Preliminary Experimental Test of Theoretical Predictions 

A brain-behavior-experiment has been performed by Kelso et aL (1994) in 
which subjects moved their left and right index fingers in time with an au
ditory metronome presented to both ears in ascending frequency plateaus of 
ten cycles each. The initial metronome frequency was 2.0 Hz and increased 
by 0.2 Hz for each plateau with a total number of eight plateaus. The sub
ject was instructed to move the right finger anti-phase and the left finger 
iIi-phase with the metronome, and switched spontaneously to a movement 
pattern with both fingers in-phase as the metronome frequency increased to 
the fourth plateau (2.6 Hz). During the experiment magnetic field measure
ments of brain activity were obtained with a whole-head, 64-channel SQuID 
magnetometer at a sampling frequency of 250 Hz with a 40 Hz low-pass filter. 
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Each subject performed 5 blocks of 10 runs each. In the following we want to 
check these experimental data against the theoretical predictions above. Note 
that the experimental set-up (auditory metronome) and the subject's instruc
tions differ somewhat from the experimental conditions of the present paper. 
Thus the following experimental results have to be considered a preliminary 
test of the presented theory. 

In order to test our theoretical predictions of the previous sections we 
perform a Karhunen-Loeve Decomposition (KL) (see e.g. Fuchs et al. (1992) 
and this volume) of the MEG data on each frequency plateau separately. A 
KL decomposition decomposes a spatiotemporal signal 'IjJ(x, t) into orthogo
nal spatial modes and corresponding time-dependent amplitudes such that a 
least-square error E is minimized and the KL modes have maximum variance. 
The normalized KL eigenvalue A = 1 - E is a measure for the contribution 
of a KL mode to the entire spatiotemporal signal. Figure 4 shows the first 
KL mode (top row) plotted over the movement frequeI!cy. The orientation of 
the modes is such that the nose is on the top indicated -by the triangle and 
their color coding (after normalization) is given on the bottom. Before the 
transition at 2.6 Hz we observe a constant spatial pattern, after the behav
ioral transition (2.8-3.2 Hz) a different structure (increased activity on the 
right hand side of the mode contributing to a more antisymmetric shape) 
is observed in the first KL mode which is similar over the posttransition 
plateaus. 

Experiment 

Theory 

2.0 Hz 2.2 Hz 2.4 Hz 2.6 Hz 2.8 Hz 3.0 Hz 3.2 Hz 

1.oD ___ I 

0.5 : 

--- I ___ _ Min o. Max 
2.0 3 .0 H z 

Fig. 4. Top and middle row: MEG map of first KL mode with extracted neural 
strip containing primary motor and sensorimotor areas plotted over movement fre
quency. Bottom row: Numerically simulated patterns. Bottom left: Quantification 
of symmetry of first KL mode (green: antisymmetric, blue: symmetric) 
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We extract a strip of activity from the spatial MEG patterns which is 
located mainly over the primary motor and sensorimotor areas (Fig. 4 mid
dle row) and compare it with the activity of the numerically simulated data 
(bottom row). Note that in the numerical simulations the terms symmet
ric/antisymmetric apply to current distributions and hence to patterns to be 
observed in the EEG. Current flowing in apical dendrites of pyramidal cells 
generates a magnetic field in a plane orthogonal to the currents. Thus, spatial 
antisymmetric (symmetric) patterns in the MEG correspond to symmetric 
(antisymmetric) current distributions, and we reversed the symmetry of the 
numerically simulated patterns in Fig. 4 for better comparison. 

The degree of symmetry s of the experimental first KL mode is quanti
fied and plotted over the frequency in the bottom left corner. The transition 
plateau is indicated by the vertical dotted line. In the pretransition region 
the first KL mode is about 70% antisymmetric (green line) and 30% symmet
ric (blue line), whereas after the transition the antisymmetric contribution 
increases to 90% and the symmetric contribution ctecreases to 10%. 

In the temporal domain (not shown in Fig. 4) almost the entire power of 
the first KL mode is in the Fourier component of the movement frequency 
for all plateaus. There is no transition in the relative phase between the 
amplitude of the first KL mode and the metronome which always remains in
phase with the non-switching finger movement as required by our theoretical 
predictions. 

4 Summary 

The main point of the present paper is to show how it is possible to derive 
the phenomenological nonlinear laws at the behavioral level from models de
scribing brain activity. For the paradigmatic case of bimanual coordination 
we briefly reviewed the collective and component level of description of the 
behavioral dynamics. We proceeded by transforming the behavioral model on 
the component level onto a model describing the dynamics of the behavioral 
modes. The behavioral level was connected to the brain level by deriving the 
behavioral model on the mode level from a recently developed field theoreti
cal description of brain activity. For the derivation the crucial points were the 
assumption of bimodal brain dynamics and the interplay between functional 
input and output units in the neural sheet. Here the comparison of behavioral 
and brain level serves as a guide to consistency of both descriptions. We made 
theoretical predictions about the global brain dynamics and presented a pre
liminary experimental test which gives strong indications that the predicted 
spatiotemporal dynamics is present during bimanual coordination tasks. 
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A Explicit Forms of Coupling Integrals 

We define 

f+(x) = pg+(x) + Co ((31s(X) + (3rs(x)) 1L/2 (3lm(X)g+(x) dx 
-L/2 

f-(x) = pg_(x) + Co ({3ls(X) - (3rs(x)) 1L/2 (31m(X)g-(x) dx 
-L/2 

and give the explicit forms of the coupling integrals fij.in (31),(32) as 

1L/2 . 
flO = .. g+(x) f+(x) dx 

-L/2 
1L/2 

fOl = g_(x) f-(x) dx 
-L/2 

(42) 

( 43) 

(44) 

f03=1 L/2 g_(x)f_(x)3dx (45) 
-L/2 

References 

121 = 1L/2 g_(x)f+(x)2f_(x)dx (46) 
-L/2 

Abeles M. (1991), Corticonics, Cambridge University Press 
Braitenberg V., Schiiz A. (1991), Anatomy of the cortex. Statistics and geometry, 

Springer, Berlin 
Buchanan J.J., Kelso J.A.S., de Guzman G.C. (1997), The selforganization of tra

jectory formation: 1. Experimental evidence, Biol. Cybern. 76, 257-273 
Carson R., Byblow W., Goodman D. (1994), The dynamical substructure of biman

ual coordination, in: Swinnen S., Heuer H., Massion J., Casaer P., eds., Interlimb 
coordination: Neural, Dynamical and Cognitive Constraints, pp. 319-337, Aca
demic Press, San Diego 

Collins J.J., Stewart LN. (1993), Coupled nonlinear oscillators and the symmetries 
of animal gaits, J. Nonlinear Sci. 3, 349-392 

Cross M.C., Hohenberg P.C. (1993), Pattern formation outside of equilibrium, Rev. 
Mod. Phys. 65, 851 

FellemaR D.J., Van Essen D.C. (1991), Distributed hierarchical processing in the 
primate cerebral cortex, Cerebral Cortex 1, 1-47 

Freeman W.J. (1992), Tutorial on neurobiology: From single neurons to brain chaos, 
Inter. J. Bif. Chaos 2, 451-482 

Friedrich R., Fuchs A., Haken H. (1991), Spatiotemporal EEG patterns, in: Haken 
H., Koepchen H.P., eds., Rhythms in Physiological Systems, Springer, Berlin 



124 Viktor K. Jirsa, J .A. Scott Kelso, and Armin Fuchs 

Fuchs A., Haken H. (1988), Pattern recognition and associative memory as dynam
ical processes in a synergetic system 1+11, Erratum, BioI. Cybern. 60, 17-22, 
107-109, 476 

Fuchs A., Kelso J.A.S., Haken H. (1992), Phase Transitions in the Human Brain: 
Spatial Mode Dynamics, Inter. J. Bif. Chaos 2, 917-939 

Haken H., Kelso J.A.S., Bunz H. (1985), A Theoretical Model of Phase transitions 
in Human Hand Movements, BioI. Cybern. 51, 347 - 356 

Haken H. (1983), Synergetics. An Introduction, 3rd ed., Springer, Berlin 
Haken H. (1987), Advanced Synergetics, 2nd ed., Springer, Berlin 
Haken H. (1991), Synergetic Computers and Cognition, A Top-Down Approach to 

Neural Nets, Springer, Berlin 
Haken H. (1996), Principles of brain functioning, Springer, Berlin 
Jirsa V.K., Friedrich R., Haken H., Kelso J.A.S. (1994), A theoretical model of 

phase transitions in the human brain, BioI. Cybern. 71, 27-35 
Jirsa V.K., Friedrich R., Haken H. (1995), Reconstruction of the spatio-temporal 

dynamics of a human magnetoencephalogram, Physica D 89, 100-122 
Jirsa V.K., Haken H. (1996), Field theory of electromagnetic brain activity, Phys. 

Rev. Let. 77, 960 
Jirsa V.K., Haken H. (1996), Derivation of a field equation of brain activity, J. BioI. 

Phys. 22, 101-112 
Jirsa V.K., Haken H. (1997), A derivation of a macroscopic field theory of the brain 

from the quasi-microscopic neural dynamics, Physica D 99, 503-526 
Kelso J.A.S. (1981), On the oscillatory basis of movement, Bull. Psychon. Soc. 18, 

63 
Kelso J.A.S. (1984), Phase transitions and critical. behavior in human bimanual 

coordination, Am. J. Physiol. 15, RlOOO-RlO04 
Kelso J.A.S., Scholz J.P., Schoner G. (1986), Nonequilibrium phase transitions in 

coordinated biological motion: critical fluctuations, Phys. Let. A 118, 279-284 
Kelso J.A.S., Buchanan J.J., Wallace S.A. (1991), Order parameters for the neural 

organization of single, multijoint limb movement patterns, Exp. Brain Res. 85, 
432-444 

Kelso J.A.S., Bressler S.L., Buchanan S., DeGuzman G.C., Ding M., Fuchs A., 
Holroyd T. (1992), A Phase Transition in Human Brain and Behavior, Phys. 
Let. A 169, 134 - 144 

Kelso J.A.S., Fuchs A., Holroyd T., Cheyne D., Weinberg H. (1994), Bifurcations 
In human brain and behavior, Society for Neuroscience, 20, 444 

Kelso J.A.S. (1995), Dynamic Patterns. The Self-Organization of Brain and Behav
ior, The MIT Press, Cambridge, Massachusetts 

Kristeva R., Cheyne D., Deecke L. (1991), Neuromagnetic fields accompanying uni
lateral and bilateral voluntary movements: Topography and analysis of cortical 
sources, Electroenceph. Clin. Neurophys. 81, 284-298 

Miller R. (1987), Representation of brief temporal patterns, Hebbian synapses, and 
the left-hemisphere dominance for phoneme recognition, Psychobiology 15 ,241-
247 

Nunez P.L. (1974), The brain wave equation: A model for the EEG, Mathematical 
Biosciences 21, 279-297 

Nunez P.L. (1995), Neocortical dynamics and human EEG rhythms, Oxford Uni
versity Press 



Traversing Scales of Brain and Behavioral Organization III 125 

Scholz J.P., Kelso J.A.S., Schoner G. (1987), Nonequilibrium phase transitions in 
coordinated biological motion: critical slowing down and switching time, Phys. 
Let. A 123, 390-394 

Schoner G., Jiang W.Y., Kelso J.A.S. (1990), A Synergetic Theory of Quadrupedal 
Gaits and Gait Transitions, J. theor. BioI. 142, 359-391 

Tuller B., Kelso J.A.S. (1989), Environmentally-specified patterns of movement 
coordination in normal and split-brain subjects, Exp. Brain Res. 75, 306-316 

Wallenstein G.V., Kelso J.A.S., Bressler S.L. (1995), Phase transitions in spatiotem
poral patterns of brain activity and behavior, Physica D 84, 626-634 

Wiesendanger M., Wicki U., Rouiller E. (1994), Are there unifying structures in the 
brain responsible for interlimb coordination?, in: Swinnen S., Heuer H., Massion 
J., Casaer P., eds., Interlimb coordination: Neural, Dynamical and Cognitive 
Constraints, pp. 179-207, Academic Press, San Diego 

Williamson S.J., Kaufman L. (1987), Analysis of neuromagnetic signals, in: Gevins 
A.S., Remond A., eds., Methods of analysis of brain electrical and magnetic 
signals. EEG Handbook, Elsevier Science 

Wilson H.R., Cowan J.D. (19~2), Excitatory and inhibitory interactions in localized 
populations of model neurons, Biophysical Journal 12, pp. 1-24 

Wilson H.R., Cowan J.D. (1973), A mathematical theory of the functional dynamics 
of cortical and thalamic nervous tissue, Kybernetik 13, 55-80 


