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1 Introduction: Probing the Human Brain 

Brain signals can be recorded from humans in a great variety of experimen­
tal setups and task conditions. As outlined in the first of our papers (Kelso, 
Fuchs and Jirsa this volume, referred to in the Jollowing as KF J) our ap­
proach aims at specific situations were (in most cases) coordination tasks are 
used to prepare the brain into a certain state. Changing this state by either 
the variation of an external parameter or slight changes in the task allows 
us to link properties of movement behavior to ongoing neural activity. In so­
called transition paradigms we have shown how the spatiotemporal patterns 
obtained by recordings of the electric scalp potential (EEG) (Wallenstein et 
al. 1995), (Meaux et al. 1996) or the magnetic field (MEG) (Fuchs et al. 
1992) undergo changes when spontaneous switches in the subject's motor co­
ordination occur. Here we describe in detail how analysis and visualization 
techniques can be used to show how brain activity is related to a kinematic 
feature of finger movement - its velocity profile, as outlined in KF J. We are 
going to show which parts of the brain signals are invariant a cross different 
movement types, i.e. the flexion or extension of an index finger, and what 
differences can be found for different task conditions, i.e. syncopation or syn­
chronization with an external stimulus. 
This paper is organized as follows: 

Sect. 2 gives a brief overview about the state of the art technology for 
(noninvasive) recordings from the human brain and it summarizes the 
advantages and disadvantages of different methods. We also briefly review 
the visualization and analysis techniques we are going to apply to the 
experimental data; 
Sect. 3 presents the results; and 
Sect. 4 contains the conclusions and some future perspectives. 

Z Recording Technology, Visualization, and Analysis 

2.1 Technology 

One of the goals in brain research is to find the spatial distribution of electric 
current density j(r, t) inside the brain at each moment in time. In a perfect 
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situation this distribution could be measured from the outside and, knowing 
all the inputs, could be predicted from a "brain theory". Unfortunately, the 
problem of calculating the current density inside a volume from measurements 
on a surface outside this volume (known as the "inverse problem") is ill-posed, 
i.e., it has no unique solution. There are essentially two methods in use to 
record the electric and magnetic activity of the human brain that are purely 
non-invasive: 

Electroencephalography (EEG) records the electric potential at the scalp 
surface from typically a few (in clinical applications) to up to about 200 (in 
research labs) different locations. The electric potential is a quantity that can 
only be measured with respect to a reference (i.e., only potential differences 
can actually be measured). It has always been an issue what is a "good" 
reference because different locations of the reference electrode lead to differ­
ent spatial patterns of the electric potential, and what is. the "best" reference 
procedure is mostly a philosophical issue (see e.g. Nunez (1981) for a detailed 
discussion of the physics of this problem). Moreover, EEG signals are con­
taminated and smeared due to electric volume conduction inside the brain 
tissue and cerebral fluid before they reach the scalp leading to different ac­
tivity patterns on the scalp versus the cortex. There are different techniques 
in use to deblur these signals. One common method is calculating spatial 
derivatives (Laplacians, which also solves the reference problem because this 
quantity is independent of the reference used) (Nunez et al. 1993). It is also 
possible to estimate the local conductivity of the tissue from MRI scans (Le 
and Gevins 1993), and calculate the current density on the surface of the 
cortex; 

Magnetoencephalography (MEG). Most oftoday's magnetometers mea­
sure the radial component of the magnetic field produced by intra-cellular 
currents inside the brain at up to also about 200 spatial locations. It is 
estimated that about 10000 neurons have to be active simultaneously to 
create a magnetic field that can be picked up from outside the brain even 
though the sensors used (so-called Superconducting Quantum Interference 
Devices or SquIDs) are sensitive to magnetic fields on the order of 10 IT 
(femto Tesla = 1O-15Tesla) which is less than one billionth part of the earth's 
magnetic field. MEG signals generally show more spatial structure than EEG 
signals because the magnetic field can penetrate the tissue with very little 
interaction. MEG is mainly sensitive to tangential current flow because this 
type of current creates magnetic fields that enter and exit the head whereas 
radial currents have magnetic fields which are confined inside. It should be 
mentioned that even though only the radial component of the field is mea­
sured it is possible (at least in principle) to calculate the other two compo­
nents tangential to the surface defined by the sensors using Maxwell's equa­
tions (Liitkenh6ner 1994). In any case, there always exist (infinitely many) 
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current distributions inside a volume (the brain) that leave no signal at all 
in a set of sensors arranged on a surface around it; anyone of them can be 
added to a current distribution that is compatible with the measured field, 
and therefore the inverse problem has no unique solution. 

Both techniques have a high resolution in time (on the order of ms) 
and a low resolution in space (on the order of cm) due to inter-sensor dis­
tances on the head. "Low" here is with respect to techniques like MRI 
where the spatial resolution is on the scale of mm in a 3d volume. Never­
theless, the amount of data produced in experimental sessions is enormous 
as a simple estimate shows: If we record from 200 EEG and/or MEG sen­
sors at a sampling frequency of 250 Hz and an accuracy of 16 bits we have 
200 x 250 x 2 = 100000 bytes/sec or more than a GigaByte for 3 hours of 
recording time. Interestingly, these numbers don't seem frightening anymore 
because almost two hours fit on a single CD. The more important question 
is how to extract the . relevant information from such a dataset because even 
after say averaging we are still left with one time series for each sensor as 
shown in Fig. 1. 

Simultaneous Recording of MEG and EEG of an Auditory Stimulus 

143 channels of MEG 32 channels of EEG 

Fig. 1. Time series of a simultaneous recording of 144 channels of MEG and 32 
channels of EEG for an auditory stimulus (data courtesy of CTF Inc., Vancouver) 

. It is evident that a great amount of the information in this dataset is 
redundant and plotting all these time series is certainly not the best way 
to visualize the spatiotemporal dynamics we are interested in. Color coded 
topographic maps plotted at certain timepoints can be used to show the 
spatial patterns for the electric potential or the magnetic field. Because the 
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sensors are usually not arranged on a planar surface projection procedures 
must be used to obtain a pattern on flat paper without loosing information 
from hidden sensors. The top os in this article are calculated the following way: 
Assuming a center in the middle of the head, the 3d (x, y, z) coordinates of 
the sensors can be transformed into spherical coordinates (r, (), cp). The 2d 
coordinates for the plots are then given by 

x = s()coscp, Y = s()sincp (1) 

where s is a scaling factor that determines the size of the figure. An example 
showing the sensor locations and a pattern of neural activity on a subject's 
head, together with the projection and a color scale that links certain colors 
to magnetic field amplitude is given in Fig. 2. Figure 3 shows topographic 
maps from the time series in Fig. 1 at two different timepoints (t = 108 ms, 
and t = 220 ms after stimulus onset). These points were picked to answer the 
question what is the "better" technology EEG or MEG (this issue is currently 
fought out in the BIOMAG mailing list (which can be lound on CTF's web 
site: http://www.ctf.com). In Fig. 3 at t = 108 ms, clearly, the MEG pattern 
shows more structures, i.e. two dipolar patterns indicating current dipoles 
in the left and the right hemisphere pointing posterior. The pattern of the 
electric potential is quite structureless. At t = 220 ms there is virtually no 
magnetic field but a strong positive potential picked up by the EEG. Of 
course, the scaling for the two time points is the same as indicated by the 
color scales. This is a situation where current flow exists inside the head but 
in a way that leaves virtually no traces in the SQuID sensors. Therefore, to 
get as much information as possible about electromagnetic brain activity one 
would like to have measurements of both EEG and MEG, preferably recorded 
simultaneously. 

To visualize the dynamical nature of brain activity, topographic maps can 
be produced for each time point and animated as movies. Examples of such 
animations for different conditions for EEG and MEG (in MPEG format) 
can be downloaded from our web site (http://www.ccs.fau.edu). 

2.2 Analysis Methods 

A better understanding of what is going on in large data sets can often 
be achieved if the data is preprocessed, in certain ways that allow for an 
extraction of relevant information or elimination of redundancies. Here we 
briefly describe two linear methods that we use for this purpose. 

The Karhunen-Loeve Transformation. Several names are on the market 
for this decomposition technique including Principal Component Analysis or 
Singular Value Decomposition. Essentially they all follow the same basic idea: 
we have time series (EEG or MEG) measured at (very) many locations in 
space. These time series represent spatial patterns at each time point, i.e. a 
spatiotemporal pattern. In principle any spatiotemporal pattern H(x, t) can 
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Fig. 2. A pattern of magnetic brain activity and sensor locations from four views 
on the subject's head (top), and in the projection (bottom). Blue indicates locations 
where the magnetic field is entering the head, red-yellow sites where the field is 
exiting the head. The color scale is in units of femtoTesla (IT) 
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MEG and EEG of an Auditory Stimulus: Topographic Maps 
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t=108m t=220ms 

Fig. 3. Topographic maps of the data shown in Fig. 1 at two representative points 
in time 

be written as the sum over a set of spatial patterns 'lj;(i) (x) multiplied by time 
dependent amplitudes ~i(t): 

N 

H(x,t) = L~i(t)'lj;(i)(X). (2) 
i=1 

In our case space and time are discrete, i.e. the function H(x, t) is known 
at certain locations k in space and at certain time points depending on the 
sampling frequency. However, in the following we assume that space is dis­
crete but keep time continuous because it simplifies the notation. This way 
H(x, t) becomes a vector H(t) at every time point where the component 
Hk(t) represents the amplitude (potential difference between an electrode 
and the reference, or magnetic field component) at sensor location k and 
time t. By applying the same notation to the spatial functions Ili(i) (x) (2) 
reads for component k: 

N 

Hk(t) = L~i(t)'lj;ii) . (3) 
i=1 

If the vectors Ili(i) form a complete set and N is equal to the number of sen­
sors the original signalH (t) is reconstructed exactly. The more interesting 
question, however, is: Can we obtain a set of vectors Ili(i) for which we have to 
sum over only a few, say M « N, and still get a decent (90-95%) reconstruc­
tion of the original signal? It can be shown that the Karhunen-Loeve (KL) 
transformation creates such a set of vectors Ili(i) such that for any truncation 
point M, the mean square error between the original and the reconstructed 
signal becomes a minimum: 

(4) 
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It can also be shown that the basis vectors l{I(i) in this case are the eigenvectors 
of the covariance matrix C from the time series hi(t): 

(5) 

where fh is the mean value of the time series from sensor k. The eigenval­
ues of this matrix are a measure of how much the corresponding eigenvector 
contributes to the variance of the original signal. Notice that the covariance 
matrix is symmetric and therefore its eigenvalues are real numbers and its 
eigenvectors are orthogonal. The time dependent amplitude ~i(t) for the vec­
tor Ijt(i) is given as the scalar product between the vector and the pattern at 
time t, H(t) 

N 

~i(t) = H(t) Ijt(i) = L Hk(t) 'lfJii ) . (6) 
k=l 

The patterns Ijt(i) arid the time series ~i(t) fulfill the orthogonality relations 

N 

Ijt(i) Ijt(j) = L 'lfJii ) 'lfJ~) = 8ij and (7) 
k=l 

where 8ij represents the Kronecker-delta. In the sense of (4) the set of basis 
vectors Ijt(i) is optimal which means it is not possible to find a different set of 
M vectors that has a smaller mean square error. There may be circumstances, 
however, where it is of advantage to minimize other quantities (like in the 
bi-orthogonal decompositions discussed below). 

Figure 4 shows the first three spatial patterns and their corresponding 
time dependent amplitudes from a KL-expansion of the dataset from Fig. 1 
for the case of EEG (top row) and MEG (bottom row). For EEG the pat­
tern representing the first eigenvector contributes already about 97% to the 
variance of the signal, i.e. by using only this pattern we can get a very good 
reconstruction of the whole dataset - an enormous compression of informa­
tion compared to the 32 time series. For MEG three patterns are necessary 
to account for 90% of the variance. Movies in MPEG format showing the 
spatiotemporal dynamics of the original signal together with a reconstruc­
tion from one, two, and three spatial patterns can be downloaded from our 
web site. 

Hi-Orthogonal Expansions. The bi-orthogonal expansions are used to ob­
tain a bi-orthogonal set of vectors and time dependent amplitudes calculated 
from a spatiotemporal pattern corresponding to a given second set of time 
series. Say we have a set of time series Hk(t) from EEG or MEG recordings 
where k represents the different sensors. In addition, we have a second set of 
time series, ri(t), for instance the movement profile of a finger and its deriva­
tive. From these two sets we want to calculate the spatial patterns Ijt(i) in 
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Fig. 4. Kl-expansion of the data shown in Fig. 1 (see text) 

a way that if we project H(t) onto them we get an approximation of ri(t). 
There are various ways to do that: 

- We can calculate the patterns according to 

N M T 

L L 1 dt {Hk(t) - ri(t) ¢ii)}2 = Min 
k=l i=l 0 

(8) 

In this case the patterns can readily be calculated by taking the deriva­
tive of (8) with respect to ¢~) and solving for ¢ii). The equations are 

completely decoupled and ¢ii) is given by: 

where ( ... ) is an abbreviation for the time average ~ 1:: dt .. . . 
- A second possibility is to calculate the patterns according to: 

N T M 

L 1 dt {Hk(t) - L ri(t) ¢ii)}2 = Min 
k=l 0 i=l 

(9) 

(10) 

Notice that this case is more like an expansion. Now, taking the deriva­
tives with respect to ¢';/.) leads to linear systems of equations of dimension 
M for the components ¢ii) which have to be solved for every k: 

M 

(rj(t) Hk(t)) = L(ri(t) rj(t)) ¢ii) (11) 
i=l 

A priori it is not evident which one of these techniques is "better" . In any 
case, the vectors l}/(i) will not form an orthogonal basis. Therefore, a set of 
adjoint vectors l}/(i)+ needs to be calculated that fulfills the relation: 
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M 

I[r(i)+ I[r(j) = bij and I[r(i)+ = L aij I[r(j) (12) 
j=l 

Using these adjoint vectors the set of time series €i(t) corresponding to Ti(t) 
is then obtained as: 

N 

€i(t) = L hk(t) 'l/Iki )+ (13) 
k=l 

Friedrich and Uhl (1992, 1996) used such expansions to obtain spatial pat­
terns that represent the dynamical properties of a data set more appropriately 
than the patterns obtained by the KL-expansion which are restricted by the 
orthogonality constraint (7). The idea is to use the time series for the domi­
nating pattern from a KL-expansion and to calculate the other patterns in a 
way that they correspond to temporal derivatives of this function. This way 
the data can be represented by a dynamical syst§m of first order differential 
equations of the form . 

(14) 

where a set of two bi-orthogonal patterns relates to each variable 'T]i. Bi­
orthogonal expansions of the second type are depicted in Fig. 5, again for 
the EEG (upper row) and MEG (lower row) data sets. Shown are the most 
dominant patterns from a KL-expansion (left most column) for EEG (top) 
and MEG (bottom) and the corresponding adjoint pattern (second column 
from left) together with the time series calculated according to (13) in red. 
The original time series from the KL-decomposition is also plotted in green 
but is not visible in this case because the two curves are virtually identical. In 
the fourth and fifth columns the patterns that best fit the time dependence 
of the derivative of the curves in column three are shown with their corre­
sponding adjoint patterns, respectively. Again in column six the original time 
series (the derivatives of the curves in column 3) are plotted in green and the 

A~ .942 E1a 
1M. :(J() , .'40 . .Jt(J(J, 

Fig. 5. Bi-orthogonal expansion of the data shown in Fig. 1 (see text) 
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curve reconstructed from (13) in red. In this example the patterns and their 
adjoints are very similar because the patterns are almost orthogonal which 
is not always the case. The right-most column shows phase space plots, i.e. 
~(t) plotted in the x-direction and ft~(t) in the y-direction. The attractors 
are obviously not unfolded in two dimensions since the trajectories intersect. 
However, the skeleton is the same for all four curves: There is one fixed point 
at ~ = 0 and there appears to be a second fixed point for a negative value of 
~. So even though the spatial patterns picked up be MEG and EEG are quite 
different the main features of the underlying dynamics from the viewpoint of 
dynamical systems are similar (for a much more sophisticated reconstruction 
of attractor skeletons and phase space dynamics see e.g. the contribution by 
Uhl et al. this volume). 

3 Experimental Results 

We are now going to apply the techniques outlined in the previous section 
to the data from the flexion-extension experiment outlined in KF J. There 
we claimed that a strong correlation exists between the pattern of neural 
activity and the velocity profile of the finger movement for a variety of differ­
ent movement directions or movement rates. In order to examine this relation 
further we first have a closer look at the dynamics of the movement itself (the 
movement amplitude as a function of time, or movement profile) and then 
analyze its connection to the observed patterns of brain activity in detail. 

3.1 Behavioral Dynamics 

The results obtained for the coordination behavior as far as timing (in terms 
of relative phase between stimulus and the movement) is concerned have 
already been discussed in KFJ (cf. Fig. 3 therein). It has been shown that 
the distributions of relative phase for the syncopation conditions are broader, 
indicating a less stable state of the system, compared to synchronization. Here 
we want to concentrate on the shape of the movement profile for the different 
conditions. Figure 6 shows the averaged movement profile together with the 
corresponding standard deviations for all four task conditions. 
All curves are bell-shaped but show remarkable differences between the dif­
ferent kinematics flexion and extension. The flexion movements are shorter, 
steeper during the left flank when compared with the right flank, and more 
variable at the time of peak movement amplitude. The extension movements, 
on the other hand, are wider with an earlier onset in the cycle, and more sym­
metric with an almost constant variability. If our claim stated in KF J about 
the relation between brain activity and movement velocity is valid, these dif­
ferences must be visible in the MEG data, i.e. we expect that the dipolar 
pattern of movement activity is visible in the extension conditions before it 
can be seen in the flexion conditions due to the wider profile of the movement. 
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Movement Profiles for all Task Condition 
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F-on F-off E-on E-off 

Fig. 6. Shape of the averaged movement profile with the standard deviation 
(shaded) for all task conditions 

A movie at our web site shows this is indeed the case. It can also be seen in 
Fig. 4 in KF J in which the dipolar structure becomes first visible in the row 
t = -120 ms for the extension and at t = -60 mB for the flexion movement. 

3.2 Brain Dynamics 

To examine the relation between movement velocity, v(t), and the brain signal 
in sensor k, Hk(t), the cross correlation at zero time lag, Ck(T = 0), was 
calculated as 

C T _ ({Hk(t) - (Hk(t))}{V(t) - (v(t))}) 
k( ) - V({Hk(t) - (Hk(t))P)({v(t) - (v(t))P) 

(15) 

Figure 7 shows its value color coded as a function of space. Note that at the 
locations of maximum field magnitude (see Fig. 4 KFJ) the cross correlation 
is close to ± 1 indicating strong correlations or (anti-correlations) between 
movement velocity and magnetic brain activity. Figure 8 shows an overlay of 
the time series at sensor locations (green) and movement velocity (red; note 
the velocity profile is multiplied by the corresponding correlation value to 
correct for the fact that due to the dipolar nature of the pattern, the signal 

Cross Correlation between Brain Signals and Movement Velocity 

F-On E-On F-Off E-Off 
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Fig. 7. Cross-correlation as a function of space for all task conditions 
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is reversed in some of the sensors). Within the highlighted region (where 
the field maximum and minimum is located), the time series of these two 
quantities match extremely well. 

Overlap between Brain Signals and Correlated Velocity 

loorrL 
ls 

Condition: F·On 

-- Movement 
-- Velocity 

Fig. 8. Overlap between brain signals in all sensors (green) and the correlated 
movement velocity, i.e. the product of the velocity and the cross-correlation value 
Ck(T = 0) in the sensor (red). This quantity was chosen, because due to the dipo­
lar nature of the magnetic field patterns, the signals in some sensors are reversed 
versions of the signal in others. In the highlighted region these correlation values 
are close to ±1 as shown in Fig. 7 

As described earlier, the decomposition of a spatiotemporal pattern into 
a spatial part (consisting of static spatial patterns 1jJ(i) (x)) and a temporal 
part (consisting of a time series, i.e. amplitudes corresponding to the different 
patterns at each time point) can lead to a drastic compression of informa­
tion. How many patterns one has to take into account in order to get a decent 
reconstruction of the original signal depends on the data set under consid­
eration. As seen above for the case of an auditory evoked response in EEG 
we needed only one pattern to account for over 95% of the variance in the 
original signal whereas for the case of MEG at least 3 patterns were necessary 
(if the original data set is purely random in space and time no reduction at 
all is achieved with these techniques). 
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In KF J it has been shown that the time dependent amplitude correspond­
ing to the dominating pattern from a KL-expansion approximates the shape 
of the movement velocity profile quite well for all task conditions (see Fig. 5 
in KFJ). The time series for the second mode has no obvious interpretation 
due to the orthogonality constraint (7). Therefore, we applied the second of 
the bi-orthogonal expansions described in the previous section to the data 
and calculated the set of bi-orthogonal patterns corresponding to both the 
movement profile amplitude and velocity. Figure 9 shows the decompositions 
of the spatiotemporal brain signal for the four task conditions. 

F-on 

F-off 

Bi-Orthogonal Decomposition of the Brain Signals 
into Spatial Modes fitting Movement and Velocity 

A=0.16 

IO::~ I~:~ 
·100. ·jU. 

A=0.12 
-/00. 

3$0. 5(111. '50. E-on 150. 500. 150. 

1010=0 .73 101=0 .7-1 

l50E9 150~ o. • •• •• 0. • • ___ 
·~50. ·J50. 

A=0.63 A=0.53 
JSO. 500. 150. 'Jso. 500. 15O. 

~~~~ 1(111.~ '~: ---- ---- ---
·1 • ·100. 

A=0.25 A=0.17 
lSD. 500. '5" E-off Jj(J. J<J/). 150. 

101=0 .77 101=0 .82 

'50~ 150~ o. ___ o. ____ _ ~ _ , 
.~j(J. 

A=0.62 A=0.63 
;]50. 500. 75O. ,50 500. 1$0. 

Fig. 9. Decomposition of the data using the second bi-orthogonal expansion. For 
each condition the upper patterns represent the modes Iji(l) and Iji(l)+ correspond­
ing to the finger displacements while the lower patterns 1ji(2) and 1ji(2)+ relate to 
movement velocity. The values of >.. are an estimate of the contribution of these 
modes to the variance of the original signal. On the right, the time series of the 
averaged displacement (red, top) and its temporal derivative, the finger velocity 
(red, bottom), are plotted for each condition. The green curves represent the pro­
jection of the original brain signal onto the adjoint vectors, i.e. the time-dependent 
amplitudes 6(t) and 6(t) from a reconstruction of the signal according to (3). The 
value of tot is an estimate of the quality of the reconstruction if both modes are 
used 
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Two remarks have to be made here: First, the two AS in general do not 
add up to the total contribution (as they do for the KL-expansion) because 
the patterns are no longer orthogonal and therefore some contributions of 
one pattern can be canceled by contributions from the other pattern. The 
decomposition only makes sense if the angle between the first and the second 
pattern (given by their scalar product) is not too small (estimates say at least 
30°). Second, the quality of the reconstruction in terms of least square error 
can not be better than the reconstruction from the first two KL-modes (in 
fact, the fit is worse in all cases where the bi-orthogonal set of patterns are 
not the same as those obtained from the KL-expansion). In some sense we are 
trading here accuracy of the fit against functional relevance of the patterns, 
because now these vectors can be interpreted in terms of the behavior: They 
are the spatial patterns of the magnetic field produced by the neural activity 
that best follows the time course of movement amplitude and movement 
velocity - functionally relevant quantities created by the human motor system. 
The quality of the reconstruction from these two modes-is still excellent as 
can he seen in Fig. 10 sh~wing an overlay of the original (green) and the 
]'('(,()T1strnC'ted hrain signal (red). 

loorrL 
Is 

Condition: F·O n 
- Original brain signal 
- Reconstructed signal 

Fig. 10. Reconstruction of the signal from the two spatial patterns corresponding 
to movement amplitude and movement velocity 

So far we have seen that the brain signals are very similar for the four 
differe~t task conditions, i.e. independent of movement direction or coordi-
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nation requirements. Specifically, the spatiotemporal patterns corresponding 
to both movement amplitude and velocity are dominated by a strong dipolar 
structure over motor cortex in the left hemisphere. After demonstrating these 
similarities we nOw ask the question: Can we find differences? Due to their 
large amplitudes, the motor-related patterns mask any differences that might 
exist between task conditions. Therefore, we first remove them by subtract­
ing the contribution of both patterns at each point in time. In other words 
we subtract the red curves from the green curves (Fig. 10) and calculate the 
residual patterns for each condition separately. Figure 11 shows the results 
from this procedure. 

Fig. 11. Residual patterns after the dominating motor-related activity is removed 
for all task conditions at certain locations within a cycle (see text for details) 

We are looking for dynamical structures that are similar in different con­
ditions and occur at about the same time within the cycle. The top two rows 
show a sequence of topographic maps from the flexion-on condition occurring 
after peak movement as indicated in the boxes below each pattern. From left 
to right in the top row a red-yellow structure, indicating magnetic field that 
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exits the head, appears over right frontal areas followed by activity of the 
same polarity over left central areas a little later in the cycle. In the second 
row this pattern of activity almost vanish before the left central structure 
reappears. A very similar scenario can be seen in the third and fourth rows 
which show the spatial patterns from the extension-on conditions at the same 
time points. The right frontal activity appears a little earlier in the cycle but 
the sequence is the same and the left central activity disappears at the same 
time in both conditions. For the off-the-beat conditions no such structure is 
observable after peak movement (not shown). However, if we look at time 
slices that are shifted by half a cycle with respect to the patterns shown 
for the on-the-beat conditions we find the two pattern sequences displayed 
in the bottom rows. Given the time shift, the left central activity in the 
flexion-off shows approximately the same time course observed in in the on­
the-beat conditions. Similar observations can be made for the activity over 
right frontal areas in the extension-off condition. These similarities are prob­
ably due to the fact that the pattern sequences are now stimulus locked in all 
conditions. However, it is not easy to explain them because the stimulus in 
this experiment was a small LED and control conditions revealed no evoked 
visual fields. Therefore, it is likely that these sequence are related to some 
higher level processing of the stimulus. The most interesting point here is 
that in the off-the-beat conditions only parts of the sequence exists which 
could mean that the rest is annihilated by other ongoing activity and one 
may speculate that the instability of the syncopic coordination is related to 
these interferences. 

4 Conclusions and Outlook 

The main point in this paper was to show how visualization and analysis tech­
niques can be used to extract relevant features from large sets of experimental 
data. Relevant here means features that link neural activity patterns on one 
level and human behavior, in this case motor behavior in a coordination ex­
periment, on another level. It takes the coherent action of tenthousands of 
neurons to produce a signal that we can measure from outside the head or to 
make a finger move, but it is the movement of the finger on the other hand 
that leads to the coherent neural activity: This is the kind of circular causal­
ity which is present in all systems showing self-organization, and explored 
in the theory of synergetics founded by Hermann Haken. We can substitute 
"atoms" for "neurons" and "laser light" for "finger movement" because the 
same basic laws of self-organization govern the dynamics of entirely different 
systems. The hope is thus that some day we will be able to understand brain 
function as well as we understand the laser. To achieve this goal, both experi­
mental and theoretical investigations are needed. Experimentally, performing 
the movement at different coordination frequencies should tell us whether or 
not the sequence of the stimulus related activity in the off-the-beat condi-



106 Armin Fuchs, Viktor K. Jirsa, and J.A. Scott Kelso 

tions is longer at lower frequencies, shrinks when the frequency is increased 
and eventually vanishes when syncopation becomes unstable. From theory 
we could learn what kind of nonlinear interactions lead to such an annihila­
tion process and where in the cortex the sources of activity must be located 
to create the observed activity patterns. The high spatial resolution of func­
tional MRI could be used to identify these regions. Once known, together 
with high resolution EEG and MEG measurements, a combination of exper­
imental data and knowledge about dispersion and propagation properties of 
the neural tissue (including inhomogeneities) could eventually lead us to a 
"solution" of the inverse problem after all. 
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