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1 Introduction 

In this paper, and the ones following, we will present an approach to un
derstanding behavior, brain and the relation between them. The present 
contribution provides a sketch of the strategy we have' adopted toward the 
brain-behavior relation, notes its main tenets and applies them to a new 
and very specific experiment that uses large scale SquID arrays to deter
mine how the human brain times individual actions to environmental events. 
A second paper (Fuchs, Jirsa and Kelso this volume) will describe in more 
detail the various methods we and others have used to analyze and visual
ize the spatiotemporal activity of the brain and to extract relevant features 
from experimental data. Finally, in a third paper (Jirsa, Kelso and Fuchs 
this volume) we will spell out a theory, grounded in the neuroanatomy and 
neurophysiology of the cerebral cortex, that serves to connect neural and 
behavioral levels of description for the paradigmatic case of bimanual coor
dination. Our collective goal in these three papers is to set the stage for a 
principled move from phenomenological laws at the behavioral level to the 
specific neural mechanisms that underlie them. With respect to the history of 
science our approach is entirely conventional. Fundamentally, it begins with 
the identification of the macroscopic behavior of a system and attempts to de
rive it from a level below. Even for physical systems, however, the derivation 
of the "macro" from the "micro" is nontrivial. Only in the 70's, for example, 
was it first possible to derive the behavior of ferromagnets (as described by 
Landau's mean field theory) from more fundamental grounds using the so
called renormalization group method that earned Kenneth Wilson the Nobel 
Prize in 1982. Likewise, it took the genius of Hermann Haken to derive the 
behavior of a far from equilibrium system like the laser from quantum me
chanics (Haken 1970). Thus, some 70 years after atoms were discovered did 
it become possible to derive macroscopic properties of certain materials and 
optical devices from a more microscopic basis, and only then using rather 
sophisticated mathematical techniques. 

What lessons can be learned from such successes? One is that it is crucial 
to first have a precise description of the macroscopic behavior of a system 
in order to know what to derive. Another is that even in a system whose 
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microscopic constituents are homogeneous (unlike, say the neurons and neu
ral transmitters of the brain) special methods are needed to handle events 
and interactions that are occurring simultaneously on many spatial and tem
poral scales. For example, even in a ferromagnet, it is not possible to derive 
the macro from the micro in a single step. Rather the so-called block spin 
technique proceeds in a series of steps each of which must be repeated many 
times in order to calculate the overall level of magnetization (Wilson 1979). 
Likewise, in a heterogeneous, hierarchically organized system like the nervous 
system, it is necessary to proceed in a level by level fashion with an intimate 
interplay between theory and experiment. 

2 The Strategy 

Our strategy for traversing scales is shown in Fig. 1. Inspired by synergetics 
(Raken 1983) the basic idea is to identify relev.ant variables characterizing 
coordinated or collective states of the system and the collective variable's 
dynamics (i.e. equations of motion for collective variables). Note that in com
plex neurobehavioral systems, these are not known in advance, but have to be 
found. The experimental method uses transition points to clearly distinguish 
different coordinated behaviors. In complex systems in which many features 
can be measured but not all are relevant, we assume that the variable that 
changes qualitatively is the most important one for system function. 

It is these collective variables that are mapped on to a dynamical sys
tem (see Collective level, Fig. 1). We remark that the behavioral dynamics 
for a given system must be understood on its own terms. Relative phase, cp, 
for example, proves to be a crucial collective variable or order parameter in 
a number of situations, but in others (e.g. trajectory formation of a single 
multijoint limb (DeGuzman, Kelso and Buchanan 1997) recruitment of addi
tional degrees of freedom in coupled bimanual movements (Kelso, Buchanan, 
DeGuzman and Ding 1993) etc.) amplitudes play an important role and must 
be included in the collective variable dynamics. Likewise, equations of motion 
at the behavioral level must be (and have been) elaborated to include the 
influence of intention, environmental demands, handedness, learning, mem
ory and attention (see refs. in Kelso 1995, and Treffner and Turvey 1996 
for a recent example). Also, further experiments are necessary to identify 
the component dynamics and further theory is needed to derive the collec
tive variable dynamics from nonlinear couplings among the components (see 
Component level, Fig. 1). We note that this step has been accomplished in a 
large number of different experimental model systems such as bimanual co
ordination (e.g. Raken, Kelso and Bunz 1985), multifrequency coordination 
(e.g. DeGuzman and Kelso 1991, Raken et al. 1996) coupled pendulum move
ments (see Turvey 1994 for review), trajectory formation (DeGuzman et al. 
1997) with relevant experiments from laboratories in North America, Europe, 
and Australasia. We note also that theoretical predictions of the collective 
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GOAL: Derive behavioral laws from brain mechanisms 
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Fig. 1. The proposed level-building strategy connecting behavioral and brain dy
namics (see text for details) 
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and component dynamics have been verified over and over again. The key no
tion behind our strategy, however, is to use this precise behavioral description 
and the methodology that allowed it, in order to probe other levels of anal
ysis, in particular the brain. Here again, studies using large scale SQuID or 
multi-electrode arrays (e.g., Kelso et al. 1991, 1992, Wallenstein et al. 1995) 
and sophisticated analysis methods (e.g., Fuchs et al. 1992, see also Fuchs, 
Jirsa and Kelso this volume) have enabled us to identify relevant collective 
variables (such as spatial patterns and their time-dependent amplitudes). 
Signature features of self-organizing instabilities such as critical fluctuations 
and critical slowing down near transition points (Haken 1983) have been a 
prominent feature of these experiments. Elsewhere (Jirsa, Friedrich, Haken 
and Kelso 1994) we have summarized these results and presented a theoretical 
model that accounted for them in terms of the nonlinear interaction among 
spatial modes. We also showed how it was possible to derive the behavioral 
dynamics from this phenomenological brain mode theory (see arrow in Fig. 1 
from coupled (brain) mode level back to collective behavioral level) he nee 
providing a first glimpse of a possible connection between brain and behav
ioral levels. The bottom part of Fig. 1 shows a caricature of the neocortex 
with its sulci and gyri. Apical dendrites of pyramidal cells in columns are 
densely packed together and tend to discharge synchronously. A volume of 
cortex about O.lmm3 contains enough neurons to generate a magnetic field 
which can be measured outside the head as MEG; The term neural ensemble 
dynamics in Fig. 1 reflects our initial attempts to formulate a theory of the 
measured magnetic field generated by intracellular dendritic currents that is 
grounded in the neuroanatomy and neurophysiology of the cerebral cortex. 
Using various known facts about intra- and cortico-cortical connections, and 
a number of simplifying assumptions Jirsa and Haken (1996) already showed 
how it was possible to obtain the earlier brain mode and behavioral mod
els, hence setting the stage for a principled move from phenomenology to 
brain mechanism (One man's phenomenology is another's mechanism!). In 
this paper, and the ones that follow, we will describe some new theoretical 
and empirical developments that have emerged from the strategy illustrated 
in Fig. 1. 

3 Knowing What to Derive: 
Dynamics of Behavioral Function 

But let's start at the beginning. The goal of experiment is to invent or dis
cover paradigms that allow us to understand essential aspects of biology and 
behavior (e.g. formation of synergies, multifunctionality, stability and flexi
bility of function, invariance under change, pattern selection etc.). Thus we 
study the simplest system that contains these interesting properties. Follow
ing this approach, (1) represents an elementary equation of motion for how 
just two biological components are coordinated: 
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This dynamical law was progressively established in a series of detailed 
experiments and theoretical steps (Kelso 1984, Haken, Kelso and Bunz 1985, 
Schoner, Haken and Kelso 1986, Kelso, DelColle and Schoner 1990, see also 
Fuchs and K€lso 1994). It constitutes a macroscopic description of the be
havior of the system and contains three essential kinds of parameters: 

- one that reflects whether the individual components are the same or dif
ferent (6w). In general 6w may be viewed as an asymmetry parameter the 
sources of which are many (e.g. handedness, laterality, locus of attention, 
etc.); 

- one that reflects external or internal factors (control parameters) that 
govern the strength of coupling between the components (AI, A2); 
and one that reflects the fact that all real systems contain noise or fluc
tuations (~t) of a given strength Q. 

2 

o+-~--~------~~ 
21r <I> 7r 

Fig. 2. An elementary law of behavioral coordination (see text for details) 

Experiments showed that the relevant collective variable describing the 
functional synergy or spatiotemporal ordering between individual compo
nents is the relative phase, cp. For high values of the coupling ratio ~, both 
modes of behavioral organization coexist, the essentially nonlinear property 
known as bistability (Fig. 2, left). Bistability (or, in general, multistability) 
confers multifunctionality on the system. That is, at least two forms of be
havior are possible for exactly the same control parameter values. Notice 
that each is stable (negative slopes of the function cross the x-axis, denoted 
by solid circles, open circles mark unstable states) over a range of coupling, 
though the degree of stability may change. In this (bi)stable region (Fig. 2, 
left) the system's behavior will be restored despite any slight perturbation. 
As the coupling ratio is decreased, however, the system switches from one 
mode of behavior to another (Fig. 2, middle). Near the critical point, the 
slightest fluctuation will kick the system into a new form of stable organiza
tion. we may refer to this spontaneous transition or bifurcation as a form 
of pattern selection or decision-making which underlies the flexibility of the 
system's behavior. Switching is due to instability: under certain conditions, 
one mode of behavioral organization is less stable than another. On the right 
side of Fig. 2, there are no longer any stable states in the system. Due to 
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changes in control parameters or coupling ratio, the entire function has lifted 
off the x-axis. Note however that the function retains its curvature; there is 
still attraction to, or remnants of, previously stable states (so-called metasta
bility). This effect is entirely due to broken symmetry in the dynamics, itself 
due to the fact that the individual parts of the system or their properties 
are not the same. As a consequence of such broken symmetry, the system 
produces a far more flexible form of behavioral organization in which the 
individual components are free to express themselves yet still work together 
in a looser kind of harmony. Metastable dynamics may help us understand a 
longstanding either-or conflict in brain theory, namely how "global" integra
tion in which parts of the brain are locked together, may be reconciled with 
localized, independent activity in individual brain areas. Metastable dynam
ics says that the brain, like other complex living systems, uses a subtle blend 
of both. Finally, if the direction of the control parameter values changes after 
the transition shown in Fig. 2 (middle), the system stays in the stable state 
around ¢ = 0 , i.e., it exhibits hysteresis, a primitive form of memory. In 
Jirsa, Fuchs and Kelso (this volume) we will derive the coordination dynam
ics shown in Fig. 2 from neural ensemble properties for the paradigmatic case 
of bimanual coordination. 

4 Brain-Behavior Experiments 

It is well-known that animals and humans can accomplish the same goal us
ing different body parts and end-effector trajectories, even when the path to 
the goal is disrupted or perturbed (Kelso, Bateson, Tuller and Fowler 1984). 
Likewise, people can accomplish the same temporal rhythm using different 
anatomical structures. Think of the pianist whose fingers, feet, torso and 
head all conform to the basic beat. Or of people dancing at a rock concert. 
What is going on in the brain when humans produce this kind of "motor" 
(more properly, functional) equivalence? How is the spatiotemporal activity 
of the brain related to the actual behavior produced? Recent studies of single 
cell activity in monkeys suggest that certain parameters of voluntary move
ment such as direction may be specified in the motor cortex independent of 
the particular muscles required to execute the act (Georgopoulos 1997 for 
review). Here, using a full-head SQuID array to record ongoing brain activ
ity, we demonstrate 1) a robust relationship between time-dependent activity 
in sensorimotor cortex and movement velocity, independent of the direction 
of movement and the explicit timing requirements of the task and 2) dy
namic patterns of brain activation that are specific to task demands alone. 
Taken together, we believe these new results provide evidence of "motor" or 
"function" equivalence in humans at the level of cortical function. 

Recently we performed two experiments (Kelso, Fuchs, Lancaster, Hol
royd, Cheyne and Weinberg 1998) The main one required human volunteers 
to perform four different coordination tasks: Simple flexion or extension move-
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ments of the preferred index finger either on the beat of a metronome or 
in-between metronome beats, the frequency of which was fixed at 1Hz. One 
hundred cycles of continuous movement were recorded in each condition. No
tice that these experimental conditions may be grouped with respect to the 
kinematics of motion (flexion versus extension movements), or with respect to 
the coordination task (synchronization or syncopation). Figure 3 shows plots 
of the relative phase between stimuli and movement peaks on a cycle-by
cycle basis for all four conditions. As requested, the peak of the movement is 
closely synchronized to the stimulus in the flexion-on-the-beat and extension
on-the-beat conditions. Likewise, subjects are able to place a movement in 
between stimuli in the flexion-off-the-beat and extension-off-the-beat synco
pation conditions. 

Stimulus-Response Relations for all Task Conditions 

Stirn 
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Fig. 3. Relative phase (in radians) on a cycle by cycle basis for all conditions (top 
rows: synchronization; bottom rows: syncopation) for a representative subject. Solid 
circles indicate cycles within a ±60° range of the average phase. Open circles are 
outside this range and were rejected from further analysis 

Also shown are histograms, the width of which is a measure of the quality 
of performance. In general, the distributions for the syncopate conditions are 
broader, hence more variable than those of synchronization. Subjects tended 
to have more difficulty syncopating than synchronizing, which conforms to 
everyday experience and detailed behavioral experiments (Kelso et al. 1990). 
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Brain activity was recorded continuously as subjects performed these 
tasks using a 64 channel magnetometer (CTF Systems Inc., Vancouver) sam
pled at 250 Hz. This device consists of gradiometers arranged radially around 
the subject's head, each gradiometer consisting of a pair of parallel, axially 
centered, oppositely wound detection coils coupled to a SquID. All the mag
netic fields generated by the brain are due to the flow of electrical current, 
which is mainly ionic and is generated in the dendrites and somas of corti
cal neurons. About 10 000 neurons must be synchronously active to produce 
fields in the order of 200 IT (femtoTesla). Thus, any spatial patterning of ac
tivity within the brain is at the level of neuronal ensembles (see next section). 

What is the relation between this evolving brain activity and the actual 
behavior produced? Figure 4 shows cortical activity patterns displayed in 
polar coordinates On the plane (see Fuchs, Jirsa and Kelso this volume for 
details) for each task averaged across subjects sampled at various points 
(shown by the red line) throughout the movern.en.t. Also shown (in green, 
inside the boxes) is the average amplitude profile of the movement. To ease 
visualization across conditions the movement profiles are all plotted in the 
same positive going fashion. Notice the presence of a strong dipolar field 
in the sensorimotor area of the left hemisphere during the first part of the 
movement, regardless of whether it involves flexion or extension. Notice also 
that the field reverses just after the peak movement (column 5) and then 
becomes much weaker and more distributed. 

Decomposition of the brain's magnetic field into components correspond
ing to localized current sources is an ill-posed problem. Nevertheless, the 
spatial patterns of cortical activity shown in Fig. 4 suggest that the underly
ing neural ensemble is quite localized and fairly stationary during particular 
phases of the task. We decomposed the brain signals into spatial patterns 
and time-varying amplitudes using so-called Karhunen-Loeve (K-L) decom
position or Principal Components Analysis (e.g. Fuchs, Jirsa and Kelso this 
volume). Tangential currents naturally produce spatial correlations (the field 
entering the scalp at One location and leaving at another), and the resulting 
principal components may capture this dipolar structure. Figure 5 shows that 
the first two spatial modes (1st and 2nd columns) capture about 80% of the 
variance in the brain signals. Because the top spatial mode, like the under
lying neural ensembles, is under no orthogonality constraint, it is identical 
to the dominating spatial pattern of brain activity observed experimentally. 
The remarkable result shown in Fig. 5 is that its time-dependent amplitude 
tracks the velocity profile extremely well, especially for the initial velocity 
peak associated with the active phase of the coordination task. The second 
velocity peak constitutes the less active phase of the task and the match to 
the brain signal is weaker. It seems likely that the corresponding minimum in 
the brain signal occurs after movement onset and reflects reafferent activity 
from the periphery to somatosensory cortex (Cheyne and Weinberg 1989) 
although precentral sources may remain active throughout the movement. 
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Fig. 4. Brain activity patterns averaged across cycles and subjects (N = 5) at time 
points t (in ms) for all conditions. The time point t = 0 is the peak movement 
amplitude. The green curve in the box shown below each pattern is the average 
amplitude profile for each condition. The red line indicates the time (t = ±180ms) 
at which brain activity is sampled during the movement cycle. Each condition 
has been scaled separately to highlight the peak fields. In general, the activity 
for flexion conditions has a slightly higher amplitude range than the extension 
conditions (adapted from Kelso et al. 1998) 

These results are even more striking because the K-L mode decomposition 
simply minimizes the mean square error without regard to the movement at 
all. A second method calculates the spatial patterns that best fit the move
ment and its derivatives (Uhl, Friedrich and Haken 1995). The results of that 
procedure (see Fuchs, Jirsa and Kelso this volume) once again show that the 
largest mode corresponds to movement-related brain activity, specifically the 
velocity of finger flexion or extension. 

Two questions arise from these results. First, is the strong relationship 
between average movement velocity and the time course of cortical activity 
a mere coincidence or is it consistent across different manipulations of the 
velocity profile? In particular, does this relationship hold across a number of 
peak velocities (with the same length timecourse) and does it hold across a 
number of movement rates (similar peak velocity, but shorter timecourse)? 
Second, what, if any, influence does the task alone contribute to patterns of 
brain activation? The issue of motor equivalence is double-sided, requiring 
an identification of both invariant and task-specific aspects of brain activity. 
To answer the first question we performed two different manipulations. First, 
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Fig. 5. Decomposition of the spatiotemporal signal into spatial patterns and cor
responding time-dependent amplitudes for all conditions. The first two modes of a 
Karhunen-Loeve decomposition and their time-dependent amplitudes (in red). The 
numbers in the lower left corner of each box indicate how much of the variance 
of the entire signal is contained in a given mode. Notice the first two modes cover 
about 80% in all conditions. Overlaid in the first column is the movement veloc
ity (in blue). The tight relationship between time-dependent neural activity and 
movement velocity is apparent especially for the first peak for all task conditions 
(F _ON and E_ON refer to flexion and extension movements on-the-beat. F _OFF 
and E_OFF refer to flexion and extension movements off-the-beat) 

we sorted the existing data from all four original task conditions into sets 
representing different peak velocity ranges, from slowest to fastest. The data 
from four different peak velocity ranges for a representative subject are shown 
in Fig. 6. The brain signal (again the time-dependent amplitude of the top 
spatial mode) is plotted (in red) along with the velocity profiles (in blue) for 
the overall data (left box) and four non-overlapping bins in which velocity in
creases from left to right. The steepness of the displacement profile (in green) 
reflects the derivative, actual values of which are shown in blue. Notice that 
each graph in Fig. 6 is scaled individually, highlighting the correspondence 
between the brain signal and the velocity profile. The degree of covariance, 
given by the correlation value on the top right of each box, is high. 

Next, we performed another experiment in which we asked the same sub
jects to perform the two basic syncopation tasks at six different movement 
rates. Beginning either in the flexion- or extension-off-the-beat conditions, 
subjects were instructed to syncopate with the metronome, the rate of which 
was increased every 10 cycles from 1.25 Hz to 2.5 Hz in 5 steps of 0.25 Hz. It 
is known that transitions from syncopation to synchronization occur spon
taneously in both brain activity and behavior as movement rate is increased 
beyond a critical value (Kelso et al. 1990, Kelso et al. 1992) but the relation
strip of interest here has not, to our knowledge, been examined before. The 
results were unequivocal across subjects, initial conditions and movement 
rates. A representative example is shown in Fig. 7 for the flexion-off condi
tion. Once again, the same basic dipolar-like spatial pattern was observed at 
all movement rates. For ease of visualization, the velocity profile (in blue) 
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Fig. 6. The relationship between brain activity and movement velocity. The top 
box indicates the average data for all conditions for a representative subject. In the 
four boxes below these data are sorted according to different peak velocities which 
increase from left to right. Displacement profiles shown in green are represented on 
a common scale and increase in magnitude and steepness across the four bins. The 
time-dependent amplitude of the top spatial mode is plotted in red (eigenvalues are 
indicated above each box); the velocity profile and its standard deviation in blue and 
yellow, respectively. Labels on the y-axis (in red) indicate the range and magnitude 
of the brain signal, which increase from left to right. Blue numbers indicate the 
mean peak velocity for a given bin. From left to right, the ranges of peak velocity 
(in arbitrary units) in each bin are: 11.5 to 73.4 (average), 11.5 to 22.9, 23.0 to 
28.5, 28.6 to 39.9, and 40.0 to 73.4. Black numbers indicate the correlation value 
between brain and velocity profile (top right of each box) and corresponding lag in 
ms (bottom left) (Adapted from Kelso et al. 1998) 

is superimposed on the brain signal (here the best fit spatial pattern). The 
corresponding value of the correlation function at the time lag between the 
first velocity peak and the brain signal is also reported in the top right of 
the boxes. Given the predictive, rhythmical nature of the task it is not un
expected to find that the peak movement velocity leads the cortical activity 
by a small amount (shown in the lower left corner of Figs. 6 and 7). Yet the 
similarity in the neural and velocity profiles is once again striking, especially 
in the initial active phase of voluntary movement. 

To answer the second question about task-specific brain activity, we re
moved the dominant velocity-related spatial pattern from the recorded brain 
signals (see accompanying paper by Fuchs, Jirsa and Kelso for details and 
results). These residual brain patterns turn out to be similar for the synco
pation tasks, which in turn are very different from the corresponding brain 
activity patterns for synchronization. Thus, any differences attributable to 
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Fig. 7. The relationship between brain activity and movement rate (1.25 Hz to 
2.5 Hz) for the Flexion-on-the beat condition (the other conditions are very similar). 
The number in the lower left corner of the boxes represents the shift between the 
brain signal (red) and the movement velocity (blue). In the upper right corner the 
correlation value for the two curves is shown. The smaller boxes as one moves from 
left to right reflect the number of points sampled in a given cycle which decreases 
with movement rate (adapted from Kelso et al. 1998) 

movement direction (e.g., flexion-on and extension-off are kinematically sim
ilar) are far outweighed by differences due to the task, i.e., the goal of the 
subject's action. 

In summary, the demonstration of a robust relation between movement 
velocity and the time course of cortical activity across a broad range of initial 
conditions, peak velocities and movement rates complements single-cell stud
ies in monkeys which show that one of the most clearly represented param
eters associated with motor cortical activity is movement direction (Geor
gopoulos 1997 for review). Although obtained in a rhythmic, not discrete 
movement context, our results are congruent with very recent findings which 
show that speed is directly represented in the discharge rate of cells in pri
mary motor cortex when the directional component of the discharge pattern is 
removed (Moran and Schwartz in press). During the task of synchronization, 
the cortex appears to control the speed of movement so as to arrive or "col
lide" at the target (the metronome beat) at the right time. For syncopation 
the cortex must even plan for a virtual target in-between metronome beats. 
Of course, our results do not deny and even suggest that somatosensory in
formation is used both in the planning and execution phases of the tasks. Nor 
do they exclude a role for other brain areas (e.g. cerebellum, putamen and 
thalamus) that appear to be involved in the internal generation of precisely 
timed movements (Rao et al. 1997). Nevertheless, our findings help resolve a 
longstanding question in studies of human synchronization, namely, how the 
brain coordinates actions in time with external events. Cortical correlates 
of the velocity profile hold across different movement directions, rates and 
task demands. At the same time, patterns of brain activation appear to be 
task-specific, conforming to particular modes of coordination. Taken together, 
these results reveal signatures of motor equivalence in dynamic patterns of 
cortical activity. 
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5 A Little Theory 

Our experimental findings can be interpreted from the viewpoint of a field 
theoretical description that has been developed based on properties of exci
tatory and inhibitory neural ensembles and their corticocortical (long range) 
and intracortical (short range) interactions. The resulting spatiotemporal dy
namics is represented by a set of retarded coupled nonlinear integro-differen
tial equations for the excitatory and inhibitory neural activity (see Jirsa, 
Kelso and Fuchs of this volume for details). Due to differences in spatial and 
temporal scales this system can be reduced and transformed into one single 
nonlinear partial differential equation: 

.. . 2 2 {2 a} 'l/J(x, t) + 2 Wo 'l/J(x, t) + {wo - v Ll }'l/J(x, t) = Wo + Wo at p(x, t) (2) 

with 
p(x, t) = S['l/J(x, t) + LPi(X, t)] . (3) 

Here 'l/J(x, t) represents the spatiotemporal neural activity, Wo = via a fre
quency defined by the axonal propagation velocity v and the mean axon 
length a, S a sigmoid function, and Pi(X, t) functional input and output 
units. In the framework of this theory the experimental findings described 
above can be represented as depicted in Fig. 8. There the behavioral level 
may be represented by an equation of motion for the relative phase ¢ which 
serves as a collective variable coupling the visual stimulus to movement (see 
Fig. 2). At the brain level, a functional input unit a(x) embedded into the 
cortical sheet receives input signals from the visual metronome. An output 
unit in the motor cortex sends signals to the finger muscles which provide 
sensory feedback from muscle spindles and joint receptors to a second input 
unit located in sensormotor cortex. We seek an explicit account for the rela
tion between finger displacement r(t) and neural activity 'l/J(x, t), represented 
by: 

r(t) = J dx (3(x) J dT e--y(t-T) 'l/J(x, T) (4) 

where (3(x) describes the localization of the output unit in the cortical sheet 
and is to be identified with the dipolar mode observed experimentally (see 
Figs. 5 and 6). Notice the finger motion r(t) arises out of an integration in 
space as well as time. Such a mechanism of spatial and temporal integration 
is well-known neurophysiologically and serves to smoothen intrinsically noisy 
brain signals. It is well known that r(t) is the particular solution of 

r(t) + 'Y r(t) = J dx (3(x) 'l/J(x, t) (5) 

where the lhs represents a linear damped system driven by the neural sig
nal (rhs). Figure 9 shows the reconstruction of the movement profile from 



86 J .A. Scott Kelso, Armin Fuchs, and Viktor K. Jirsa 

neural activity according to (4) for all task conditions. Note the reconstructed 
movement profile fits the experimentally observed movement particularly well 
in the active phase represented by its positive flank. The discrepancies mainly 
occur after peak displacement and are probably due to the influences of sen
sory feedback which are not accounted for by (4). 

BEHAVIORAL 
LEVEL 

: [visual stimu lusj .. _______ .. 

BRAIN ____ .a._a. __ 

LEVEL 

intracortical 
connections 

n 
f3.(x) -.--- .. 

L ~ 
corticocortical 
connections 

o 

'----.=---...,--~ 

functiona l 
units 

neura l 
f3s.-,{xL . -. -. activity 

'IJ(x,t) 

x 

Fig. 8. Functional units embedded in a cortical sheet with long range and short 
range interactions (see text for details) 

6 Concluding Remarks 

Modern neuroscience at the end of the 20th Century is successfully reducing 
the brain to its physical elements, but it is becoming increasingly unclear how 
to put Humpty Dumpty together again, i.e., to understand how orchestrated 
biological functions arise from such structural complexity. New concepts and 
strategies are needed to handle such complex systems, and a vocabulary must 
be devised that is rich enough to characterize both behavioral and neural lev
els of analysis. A main idea behind our approach is that it is difficult, if not 
impossible, to integrate levels except in the context of well-defined behavioral 
functions. Thus, much work has gone into identifying the quite abstract, but 
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Reconstruction of Movement Profile from Brain Activity 

E0a0 F-on 

EE~F-ofr 
- Odginal !lignul 

8a~E-on 

~~E-orr 
Reconstt'ucted signal 

Fig. 9. Rp('OIlstrn('ti()u uf the lllUVellJent profile using brain activity (the dipolar 
mode's amplitude over time, shown in green) as a driving signal for the finger 
oscillator 

empirically-grounded phenomenological laws at behavioral and brain levels. 
These are then used as a necessary guide into the materially based mech
anisms and principles that underlie them. Obviously the neurophysiology, 
neuroanatomy and neurochemistry of the central nervous system constitute 
a deeper basis upon which to derive phenomenological laws of behavioral 
function. But to start with the former without knowing the latter may be a 
grave mistake. Casting back to the conceptual scheme shown in Fig. 2, notice 
that the order parameters or collective variables are function, task or context 
dependent. Nothing subjective is implied by this statement. As a consider
able amount of experimental research now shows, the same order parameters 
have been identified in a variety of contexts. Notice also in Fig. 2 that the 
order parameters are different at each level and that there may be mutability 
between order parameters and control parameters across levels. What is a 
collective variable at one level may be a control parameter at another, and 
vice-versa. The connection across levels - the traversing of scales in the title 
of this trilogy of papers - is by virtue of coupled spatiotemporal dynamics 
on all scales. 
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