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We report the results of experiments on biological motion demonstrating the presence of critical order parameter fluctuations

as the system evolves from one coordinated state 1o another at a critical control parameter value. This is a key feature of nonequi-

librium phase transitions.

The movements of animals and people are ordered -

spatiotemporal structures even though they arise
from microscopic sources (e.g. neuronal, skeleto-
muscular, vascular) of huge dimensionality. This is
reminiscent of the spontaneous formation of struc-
ture in open nonequilibrium systems (cf. e.g. [1]).
It is not unreasonable therefore to consider the for-
mation of such ordered states within a physical
description. In coordinated biological motion the
relative phasing among the limbs (or articulators, in
the case of speech) may be a relevant order parame-
ter characterizing different modes of coordination [2,
3]. For example, the phase relations among the limbs
of a quadruped enable us to classify it various gaits,
e.g. the near anti-phase, asymmetric pattern between
the legs of the trotting horse or the near in-phase,
symmetric pattern that is the signature of the gallop.
Such phase relations are stably preserved over a range
of locomotory speeds. Moreover, gait transitions
occur when animals are forced to run faster on a
treadmill [4] or when electrical stimulation 1o cer-
tain mid brain areas is systematically increased [5].
Around transition regions, unstable behavior - in
which a cat will vacillate between trotting and gallop-
ing gaits - has also been observed.
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Such movement transitions have been discovered
also in human oscillatory movements. For instance,
Kelso [6,7] performed experiments in which sub-
jects were instructed to move their index fingers or
hands rhythmically and the cycling frequency (cor-
responding to the control parameter) was varied. In
such a situation subjects can stably and reproducibly
perform in only two phase-locked modes, either in-
phase (homologous muscle groups contracting
simultaneously) or anti-phase (homologous muscle
groups contracting in an alternating fashion). The
finding that only two stable phase-lockings exist has
been demonstrated quantitatively in experiments in
which the relative phase between the two fingers was
manipulated and the variability of the produced rel-
ative phase was measured. Much less variable per-
formance was observed at relative phase ¢=0° (in-
phase) and ¢=*180° (anti-phase) than at any other
specified relative phase [8,9]. In Kelso’s experi-
ments, when subjects, initially moving in the anti-
phase mode, were instructed to increase cycling
frequency, an involuntary abrupt shift to the in-phase
mode was observed at a critical frequency. Beyond
this critical frequency value only the in-phase mode
was performed stably.

It seemed at least intuitive that the foregoing
experimental observations were consistent with other
bifurcation phenomena in nature [6,7,10]. Indeed,
their essential features were succesfully modelled by
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Haken, Kelso and Bunz [3] introducing relaxational
dynamics

p=—3V13¢ (1)

for the relative phase and mapping the observed
modes onto point-attractors. The potential

I'(¢) = —acos ¢—b cos 2¢ A (2)

complying with periodicity and symmetry require-
ments, capturesthe bifurcation diagram in that it has
minima at ¢=0° and ¢= + 180° for a/b< 4 with the
latter minimum turning into a maximum for a/b> 4.
The order parameter dynamics (1), (2) for ¢ were
then derived from nonlinear oscillator equations for
the two hands with a nonlinear couplings between
them.

The foregoing modeling work inspired an attempt
1o explicitly test the phase transition character of the
phenomenon. For example, a simple stochastic gen-
eralization of the above model [11] predicts certain
characteristic features, including critical fluctuations
of the hypothesized order parameter and critical
slowing down. Although earlier experimental work
hinted that critical fluctuations were present (evi-
dent, for example in the widening of Lissajous trajec-
tories between the individual oscillatory components
[7]1), only in recently conducted experiments -
reported here - have these fluctuations been
quantified.

The basic experiments described below have been
run on a sizeable number of subjects (a total of 10
using movements around the wrist joints, and 7 using
movements of the index fingers). As we shall show,
in spite of a variety of differences between the exper-
iments, e.g. different anatomical components, para-
digmatic modifications, data handling procedures
etc., the qualitative features of the results are
remarkably consistent and reproducible. For experi-
ments involving oscillatory wrist flexion/extension,
the subject’s forearms were fixed in a comfortable
posture while each hand grasped a vertical handle
attached to the experimental apparatus (described in
detail in ref. [12]) that rested on a table top. The
axes of the wrist joints were colinear with the axes of
the handles. The latter incorporated potentiometers
for conversion of wrist rotation angle to dc voltages.
The finger movement experiments used a similar
experimental set-up except that the forearms were
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stabilized 1o restrict movements 1o the index fingers
alone. (It is important to note in each case that in
order to reproduce the phenomenon precisely,
movements must be restricted to the relevant degrees
of freedom (wrists and fingers respectively).) On a
given run subjects oscillated the index fingers bilat-
erally in the transverse plane of motion (i.e. abduc-
tion-adduction ). The continuous x, y coordinates of
the tip of each finger were measured using infra red
light emitting diodes attached to the finger tips. All
data were digitized with a 12-bit A-D converter at
200 samples/s and stored on magnetic tape for later

computer analysis.

There were two kinds of experiments. In each the
subjects’ task was to rhythmically oscillate the wrists
or the fingers either in an in-phase or an anti-phase
mode of coordination as she/he increased the fre-
quency of movement in a step-wise manner. In the
wrist movement experiments the “control parame-
ter”, the driving frequency F, was not precisely con-
trolled. Every 3 or 4 s the subject was instructed by
the experimenter to increase slightly the cycling rate.
In the finger movement experiments, which will be
our primary focus, the frequency of oscillation was
systematically increased in 0.25 Hz steps at 4 s inter-
vals according to a metronome pacing stimulus. Data
from the finger experiments could therefore be time-
averaged for each driving frequency.

First we show the wrist data focusing on the
hypothesized order parameter, relative phase. In this
case the estimate of relative phase (which we call a
point estimate) was based simply on the phase of one
wrists’ oscillatory peak (maximum displacement)
relative to the other.

An example from one run is presented in fig. 1
which shows that an abrupt transition occurs at a
critical frequency from an antiphase (¢=~180°) to
an in-phase pattern (¢=0°) in which the wrists flex
and extend in a near synchronous fashion. The mean
phase modulus (|¢|) and its SD=((¢*) -
{191>*)"? averaged over 30 separate runs on four
subjects are presented in fig. 2. In order to facilitate
comparison among subjects and runs, nine segments
were defined for each run for analysis purposes. Each
segment includes an average of the relative phase
measure over four cycles of oscillation. The origin of
time was defined as 8 cycles prior to the transition
onset (see fig. 1). The nine segments were obtained
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Fig. 1. (A) Representative time series showing position over time of right (solid line) and left (dashed line) wrist flexion and extension
movements as the control parameter, frequency, is scaled every 3-4 s according 1o instruction. (B) The corresponding point estimate of
relative phase based on the phase of one wrist’s oscillatory peak (maximum displacement) relative 10 the other (see text for details).
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Fig. 2. The mean phase modulus ¢ |¢|) (solid circles) and its
SD=({¢>>~<101)>*)"* (open circles) averaged over 30 exper-
imental runs. Each segment includes a temporal average of rela-
tive phase over 4 'oscillalory cycles (see text for details).

by using a moving window over the data, adjacent
windows overlapping by two cycles. From S1 through
S3 (encompassing 8 cycles of oscillation) the mean
relative phase remains stable at around 180°,
decreasing only slightly. A change in relative phase is
apparent by S4 and continues until S6 where a new
steady state, ¢ |¢|) =25° is observed. Note also in
fig. 2 that further increases in oscillation frequency
produce no further changes in the relative phasing
between the wrists. Fig. 2 also shows the pattern of
fluctuations in relative phase. Here for an individual
run the SD of ¢ was determined for each four cycle
frequency segment, then averaged across all runs and
all subjects. Fluctuations in the steady state (anti-
phase pattern) are relatively low and nearly constant
for the first three segments. A significant increase in
the magnitude of relative phase variation occurs at
S4, immediately prior 1o the transition region, a
finding consistent with the enhancement of order
parameter fluctuations evident in second-order
nonequilibrium phase transitions (see e.g. ref. [1],
sect. 6.7). As expected in the transition region the
SD reaches a maximum; thereafter phase fluctua-
tions decrease to a constant level. Stability is attained
in the new, symmetrical pattern even though oscilla-
tion frequency itself continues to increase. Across
subjects the driving frequency ranged between 2.41
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and 2.88 Hz at the pre-transition segment, S4. By S9
(the end of the run) the frequency range was between
2.99 and 4.04 Hz.

Increases in fluctuations immediately before the
transition appear to reflect an instability of the anti-
phase coordinative pattern. However, the experi-
mental and analysis procedure in the wrist experi-
ment still leaves doubts about the evidence for critical
fluctuations in two respects: (1) The point estimate
of relative phase necessarily produces a relatively low
number of data points within each segment for the
temporal averages. (2) A possible non-stationarity
in the data is introduced due to the lack of exact con-
trol over the rate of frequency scaling. To alleviate
these problems we performed more refined experi-
ments on finger movements. In these the relative
phase was measured continuously, i.e. at every 5 ms
sample. In this case, each sample estimate was deter-
mined on the basis of the individual phase of each
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finger’s motion defined by ¢z =tan~" (Xr/Xy) where
Xg is the position of the right index finger normal-
ized to the cycle extrema and Xy is its normalized
instantaneous velocity. Continuous relative phase is
just ¢g — @y at each sample. In fig. 3 it is possible to
compare the continuous estimate of relative phase
(fig. 3C) and the point estimate of relative phase (fig.
3B) for a representative experimental run (fig. 3A).

The slow component of phase fluctuations is
apparent in both figs. 3B and 3C, though a finer fluc-
tuational structure emerges from the continuous
estimate. Because of the anharmonicities present in
the individual finger movement trajectories, the con-
tinuous relative phase also contains an oscillatory
component. Due to the controlled, stepwise increase
of cycling frequency explicit stationarity checks could
be made by averaging over a 0.5 s window that was
moved through the 4 seconds of data at each fre-
quency. Stationarity was guaranteed less than 1 s after
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Fig. 3. (A) Representative time series showing position over time of right (solid line) and left (dashed line) finger abduction-adduction
movements as the control parameter F is systematically scaled every 4 s. (B) The corresponding point estimate of relative phase, i.e. the
phase of one finger's oscillatory peak relative 1o the other. (C) The continuous estimate of relative phase measured every 5 ms (see text
for details) of the same time series data.

282



Volume 118, number 6

180 TRANSITION
e REGION . 60
L]
160 r \o\‘
7]
o 140 f 50
S | n
8 20| ]
Z 14
vl 18
< oo | =
E /o =
L o d
g ®t \ ©4d
> | a
E o] — ° 5
b4 60 ¢ o
8 | 120 A
Z A
40 | o
o "
= 10
20
\ J
r ‘___‘.~‘__—-A——‘—A>‘
0 —

.50 200 2.50 3.00 °

DRIVING FREQUENCY (Hz)
Fig. 4. The average mean relative phase modulus ¢ |¢|) for the
in-phase (closed triangles) and anti-phase (closed circles) modes
of coordination and the average SD (in-phase=open triangles,
anti-phase =open circles) as a function of driving frequency (in
Hz) for a set of 10 experimental runs. On a given run, the mean
and SD were calculated for the last 3 s (600 samples) at a given
frequency (see text for details).

the parameter change. The mean phase modulus
{I¢1> and the SD were therefore calculated on a
given run for the last 3 seconds at a given frequency
(i.e. 600 data points).

Fig. 4 presents the average mean relative phase
modulus (triangles) and the average SD (circles) of
the continuous relative phase across a set of 10
experimental runs for a representative subject. Sev-
eral points are worth noting in fig. 4. (1) As in the
wrist experiments, at a critical value of F there is an
abrupt transition in ¢ |¢| ) from an asymmetrical to
symmetrical pattern. No such shift in {|®]> occurs
in the symmetrical pattern (open triangles). (2) The
continuous estimate of relative phase reveals more
clearly (than the point estimate of fig. 2) the
enhancement of fluctuations (SD) in the asymmet-
rical pattern as the transition is approached. Given
the elimination of problems associated with the wrist
experiments, we believe this observation provides
strong evidence for the presence of critical fluctua-
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tions. No such fluctuational growth occurs in the
symmetrically prepared pattern even though the
control parameter continues 10 increase. (3) Relat-
edly, below the transition. the stability of the two
coordinative patterns is clearly differentiated even at
frequencies as low as 1.25 Hz. At all pre-transition
control parameter values the symmetrical pattern
exhibits a lower level of phase variance than the
asymmetrical pattern. (4) Above the transition the
data for asymmetric and symmetrically prepared
patterns coincide. (5) In the transition region itself,
the SD reaches a maximum while (|8])>=85°, a
value that almost corresponds to an equidistribution
for which ¢|g| >=90°.

To summarize, the experiments reported here have
documented, for the first time in the context of coor-
dinated biological motion, one of the key features of
a nonequilibrium phase transition, namely the pres-
ence of critical fluctuations. Obviously, the fluctua-
tional data are very similar for the two experiments
reported even though they involved different ana-

_tomical systems, different experimental paradigms

and even different measures of relative phase. Fur-
ther exploration, however, is necessary to evaluate
the extent to which the identity between the present
phenomenon and other nonequilibrium phase tran-
sitions in nature holds. For example, in addition to
enhancement of fluctuations. critical slowing down
should be observed. That is, the time it takes the sys-
tem 1o reach the stationary anti-phase state from a
state nearby (e.g. after a slight perturbation) should
increase as the frequency of oscillation is scaled
toward the transition [11). The same prediction does
not hold for the symmetrically prepared mode, i.e.
its relaxation time should not be affected to the same
degree. This predicted strong increase in local relax-
ation time of the anti-phase mode can be observed in
the line shape of the power spectrum of relative phase.
Recently, very preliminary evidence has been
obtained that line narrowing does in fact occur [13].
However, longer frequency plateaus are required to
adequately resolve spectral properties to our satis-
faction and these - as well as direct measures of
relaxation times using perturbation methods — are
incorporated into new experiments that we hope to
report soon. .
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