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Cognitive economics uses cognitive sci-
ence to understand economic decision-
making.

We review research streams that con-
ceptualize both minds and markets as
complex adaptive systems.

Narrative theories of decision-making
examine the cognitive and social repre-
sentations and processes that govern
decision-making under uncertainty.
Cognitive economics is an emerging interdisciplinary field that uses the tools of
cognitive science to study economic and social decision-making. Although most
strains of cognitive economics share commitments to bridging levels of analysis
(cognitive, behavioral, and systems) and embracing interdisciplinary approaches,
we review a newer strand of cognitive economic thinking with a further commit-
ment: conceptualizing minds and markets each as complex adaptive systems.
We describe three ongoing research programs that strive toward these goals:
(i) studying narratives as a cognitive and social representation used to guide
decision-making; (ii) building cognitively informed agent-basedmodels; and (iii) un-
derstandingmarkets as an extendedmind – theMarketMindHypothesis – analyzed
using the concepts, methods, and tools of Coordination Dynamics.
Agent-based cognitive models study
how cognitive mechanisms at the indi-
vidual level can contribute to emergent
systems-level phenomena.

Post-cognitivist approaches such as the
Market Mind Hypothesis consider minds
and markets to be one continuous com-
plex system. Coordination Dynamics is
one useful framework for analyzing this
system.
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Minds and markets as complex systems
Cognitive economics (see Glossary) is an interdisciplinary field that uses the tools of cognitive
science to understand economic decision-making [1–5]. It recognizes the strengths and limita-
tions of traditional approaches within both fields, using the insights of cognitive science to im-
prove economics and vice versa. In this article, we highlight an emerging trend within cognitive
economics, which we term ‘systems cognitive economics’. The central goal of this approach is
to understand both minds and markets as complex systems – evolving, decentralized collections
of parts that collectively and dynamically solve adaptive challenges [6–9]. Although this is not the
only approach to cognitive economics, we focus on complexity-oriented strains in this overview
because we believe these approaches are particularly promising for providing insights that tran-
scend disciplines and levels of analysis, and which therefore exemplify the broader ethos of cog-
nitive science.

Intellectual commitments of (systems) cognitive economics
Cognitive economics is distinct from its more famous cousins, behavioral economics and
neuroeconomics. Behavioral economics mainly demonstrates how humans differ from the ra-
tional agents of economic theory, while neuroeconomics mainly identifies neural correlates of
those irrational behaviors [10–13]. Rather than taking economic theory as its starting point
(often with an eye toward its flaws), cognitive economics instead takes the nature of the mind
as its starting point. As such, cognitive economics tends to be more eclectic and less prescriptive
than its cousins. Although these approaches are complementary, they focus on different ques-
tions and sometimes reach different conclusions. Box 1 summarizes some historical and contem-
porary approaches within the field.

Cognitive economics shares two key commitments of cognitive science: (i) understanding mental
activity at multiple levels of analysis; and (ii) using a variety of theoretical and methodological ap-
proaches. To this set of shared commitments, systems cognitive economics adds an additional
commitment: (iii) viewing minds and markets as instances of complex systems.
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Box 1. Historical and contemporary approaches to cognitive economics

Cognitive economics dates back at least to Simon’s [100] early explorations of bounded rationality, although econo-
mists such as Hayek [101], Knight [27,76], and arguably even Smith [21,102] had begun to incorporate ideas about cog-
nition into economic analysis before cognitive science emerged as a discipline. For example, whereas neoclassical
economics conceptualizes firms as unitary profit-maximizing entities, cognitive approaches to the firm recognized that
firms are themselves composed of parts which do not necessarily share a single goal but process information in a
decentralized manner [103,104]. Germane to our complexity-oriented approach, the idea of markets as complex systems
has itself been highlighted in economics, although it has not yet achieved mainstream status [105].

The field has blossomed in many directions since those early advances. For example, Simon’s notion of bounded rational-
ity has been formalized in resource rationality accounts, which demonstrate how seemingly irrational behaviors can have a
rational basis, such as economizing on cognitive resources [106–108] or implementing trade-offs among goals [109,110].
This work can also be seen as complementing ecological rationality approaches [15] that highlight the adaptiveness of
decision-making strategies such as heuristics. As another example, virtual bargainingmodels [111,112] provide a more
cognitively plausible alternative to game theory, using the idea that in the absence of communication, people often act as
though they had struck an explicit bargain in order to ground social behavior in cognition. Research on people’s mental
models of the economy has the potential to explain how (possibly erroneous) beliefs about social institutions such as mar-
kets can themselves influence how those institutions operate, for instance through feedback mechanisms such as politics
[113–115].Belief-based utilitymodels [116,117] show how people have preferences overmental states, such as beliefs,
which can themselves become objects of economic transactions like more traditional goods and services.

Much of the aforementioned work was initiated within psychology and neuroscience, but economists too have taken in-
creasing notice of cognition in their models. Models of risk preferences and belief updating have benefited from increas-
ingly sophisticated understanding of cognitive and neural mechanisms, particularly the role of imprecise or noisy
representations [118–121]. Yet other streams of work provide fresh glimpses at classic questions, such as measuring uni-
versalistic moral beliefs to understand altruistic behavior [122], studying the structural properties of rules to quantify the
cognitive complexity implicit in various decision-making procedures [123], and examining what role markets might play
in weeding out biased beliefs [124].
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Glossary
Agent-based model: simulation
model in which a population of agents
interact, such that the emergent
behavior of the system can
be studied.
Behavioral economics: branch of
economics that examines economic
decisions in terms of more
psychologically plausible assumptions
compared to traditional economics.
Belief-based utility: approaches that
assume that economic agents aim to
maximize utility from cognitive states,
rather than only tangible consumption.
Bounded rationality: form of rationality
achievable given the cognitive and
environmental limitations of human
decision-makers.
Cognitive economics:
interdisciplinary field that uses the tools
of cognitive science to understand
economic decision-making.
Combination problem: decision-
maker’s task of deducing, from their
beliefs and desires, the appropriate
action (e.g., the action that maximizes
expected utility in classical decision
theory).
Complex adaptive system (CAS):
collection of diverse, specialized,
organized components that co-evolve
with the environment.
Coordination Dynamics (CD):
multiscale approach to understanding
how the many parts and processes of
living things are coordinated in space
and time for specific functions and tasks.
Ecological rationality: form of
rationality that uses cognitive
mechanisms (e.g., simple heuristics) that
are effective in the environment to which
they are adapted.
Fluctuations: small deviations
surrounding an otherwise stable state
that may grow as a system approaches
instability.
Market Mind Hypothesis (MMH):
two-pronged notion that economic
activity constitutes a collective mind
(market-as-mind) and that mental
activity comprises market-like forces
(mind-as-market).
Mediation problem: decision-maker’s
task of transducing information from the
environment into a format conducive to
action (e.g., probabilities in classical
decision theory).
Metastability: in CD, the capacity of a
complex system to express integrative
(collective) and segregative (individual)
tendencies at the same time.
Levels of analysis
Many cognitive scientists are familiar withMarr’s [14] levels of analysis – computational (the goal of
the cognitive system), algorithmic (the representations and processes required to transform in-
puts into the desired outputs), and implementational (the physical, e.g. neural, substrate that im-
plements those representations and processes). Marr hoped that cognitive scientists tackling a
problem from multiple angles would create a cascade through these levels.

Although these levels of analysis may be useful for analyzing some cognitive systems, they lack
descriptive power for understanding systems that include extensive interactions with other
agents or with the environment. Thus, to these traditional levels of analysis, cognitive economics
adds an orthogonal dimension of analysis (Figure 1) – the trichotomy of cognition, behavior, and
systems.

Like mainstream behavioral economics, cognitive economics recognizes the importance of indi-
vidual behavior. Behavioral science is the 'central social science', as behavior mediates the rela-
tionship between cognitive mechanisms and systems-level social processes; cognition that is not
somehow manifested in behavior will not influence economic or other societal outcomes. Thus,
questions of individual rationality and bias are certainly relevant to understanding both minds
and markets, as reflected in the long history of work on this topic [12]. However, cognitive econ-
omists generally view the behavioral level as necessary but not sufficient.

Individual behavior is composed of a nest of subpersonal cognitive processes such as attention,
perception, memory, emotion, and inference that lead to action. Cognitive science was born out
of the recognition that behavior could not be explained using purely behavioral laws of reinforce-
ment, but instead required deeper cognitive explanations. Some cognitive insights are certainly in-
corporated into behavioral economics, especially the idea of heuristics [13,15]; Kahneman and
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Cognition
Mental processes 
within individuals

Behavior
Actions taken by 

individuals

Systems
Interactions

among individuals

Implementational
How is the algorithm

physically implemented?

Algorithmic
What information and processes are 

used to achieve that goal?

Computational
What is the goal of

the system?
Resource rationality models 1

Traditional neuroeconomics 7

Agent-based cognitive models  3

Traditional agent-based models 4

Traditional behavioral economics  6

Traditional economics  5

Narrative theories of cognition and action  2

Coordination dynamics / Market Mind Hypothesis 8

TrendsTrends inin CognitiveCognitive SciencesSciences

Figure 1. Levels of analysis and approaches to cognitive economics. Marr’s traditional levels of analysis
(computational, algorithmic, implementational) are listed vertically, whereas the levels of analysis added by cognitive
economics (cognition, behavior, systems) are horizontal. The thick line around the green cognition level reflects that cognitive
science has traditionally focused on mental processes within individuals, which has been criticized by postcognitive
approaches that highlight the links between cognition and action (the behavioral level) and society (the systems level). Our
positioning of specific approaches is intended as only a rough classification. 1Resource rationality approaches attempt to
explain cognitive algorithms in terms of organisms’ higher-order goals such as efficient deployment of cognitive resources.
These models often attempt to explain otherwise irrational behaviors. 2Narrative theories [37] posit specific mental
representations and processes (algorithmic level) that individuals use to solve the fundamental problems of decision-making
under uncertainty (computational level). These representations (cognitive level) manifest in behavior and therefore become
socially shared and subject to cultural evolution (systems level). 3,4Traditional agent-based models focus on how simple
assumptions about behavior scale up to emergent systems-level behavior. Agent-based cognitive models take a further step
of grounding individual behavior in cognitive models. 5Traditional economics examines how individual behavior (idealized as
self-interested goal optimization) scales up to emergent systems-level outcomes. Policy-oriented economic analysis works
backwards by specifying the desired systems-level goals and determining the incentives that would produce the individual
behavior required to achieve that goal. 6,7Behavioral economics traditionally focuses on individual (often irrational) behavior,
sometimes with an eye toward how (often flawed) algorithms or representations produce that behavior. Neuroeconomics
examines how those algorithms are implemented in the brain. 8Coordination Dynamics examines the mathematical and
neurological basis of information flow in coordinated systems, including the brain, body, and social relations. The Market
Mind Hypothesis examines the relationship between individual human consciousness – including cognitive and affective
states – and the collective consciousness of economic markets.
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Multistability: feature of complex
systems that expresses switching
between multiple possible states rather
than remaining in a single stable state.
Neuroeconomics: branch of
neuroscience that identifies the neural
mechanisms underlying the discoveries
of behavioral economics.
Phase transitions: sudden changes in
a system’s behavior as a parameter
crosses a critical threshold.
Reciprocal causality: causal pattern
in complex, coordinated systems in
which component-level behavior creates
collective patterns, which in turn modify
component-level behavior. Closely
related to the notion of reflexivity from
finance, in which investor psychology
impacts markets, which impacts
investor psychology.
Resource rationality: form of
rationality that trades off conservation of
cognitive resources against other goals
(e.g., accuracy). These models are often
used to re-interpret cognitive biases as
rational responses to limited cognitive
resources.
Rhythmic coordination: expression of
order in time such as the coordination of
movements with a regular temporal
structure.
Virtual bargaining: cognitively
informed extension of game theory in
which agents act as though they were
able to communicate a binding
agreement.
Tversky began their careers as cognitive psychologists and incorporated productive analogies be-
tween judgment and vision [12], while neuroeconomics has investigated the brain systems that im-
plement some of the calculations studied by behavioral economists [10]. Yet, as behavioral
economics has matured, it has developed its own largely autonomous set of theoretical practices,
which webelieve has shielded the field from some of themore recent advances in cognitive science.

Individual behavior composes the systems level throughwhich dyads, groups, organizations, and
societies interact. Here, we believe cognitive science can learn from traditional economics, which
focuses on how behavior can aggregate, often in unintuitive ways [16]. However, the models
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used by economists usually assume (unbounded) rationality and self-interest. There are some ex-
ceptions to this, such as work in behavioral finance that attempts to understand how irrational
market behavior could lead, in equilibrium, to observed patterns in market prices [17]. Yet,
such theories rarely are grounded in cognitive models but instead adopt the same maximizing
framework as traditional economic models, while relaxing one or more assumptions.

Cognitive scientists have learned that conjoining their three levels of analysis (computational, al-
gorithmic, and implementational) can be hugely fruitful, yet the number of unalloyed success
stories is limited (perhaps low-level vision is still the best example [18]). We believe the same is
true for the three analytic levels of cognitive economics (systems, behavioral, and cognitive).
There are many examples of research programs that provide insight across two levels, but only
limited instances of successfully unifying all three [19]. Among the research programswe describe
in the following sections, such a cascade can be uniformly said to be an aspiration, but rarely fully
achieved to date.

Intellectual pluralism
Cognitive economics, like cognitive science generally, is intellectually pluralistic. Psychology, neu-
roscience, philosophy, computer science, and anthropology are among the core disciplines on
which it draws, all grappling in their own way with understanding how intelligence works. To
this standard list, we would add economics, sociology, and political science – fields that examine
the systems level and, at their best, attempt to bridge levels by understanding how emergent so-
cietal behavior is grounded in, while influencing, individual behavior. Economics in particular has
embraced the idea that individual-level behavior can aggregate into higher-level patterns that
were intended by no individual, as when markets allocate resources through price discovery
[20,21]. Every discipline on both the original and extended list of cognitive sciences has contrib-
uted to the research programs we describe here.

Complex adaptive systems
A complex adaptive system (CAS) is a system “that involves many components that adapt or
learn as they interact” [7]. These coalitions of diverse components are organized across multiple
levels “such that organization persists or grows over time without centralized control” [6]. Brains,
immune systems, ant colonies, ecosystems, and economies are often given as examples. These
are open systems, embedded in a broader environment, which is crucial for driving their evolution.

Table 1 divides the canonical properties of CASs into structural properties, related to how parts
are organized relative to one another, and behavioral properties, related to the states and outputs
of the system as a whole. Roughly speaking, the complex aspect of CASs refers to their structure
and the adaptive aspect to their behavior.

Structurally, the components of CASs are diverse, specialized, and organized across multiple
levels. For example, whereas the initial stages of visual processing are retinotopic (i.e., related
to small receptive fields within the retina), subsequent stages draw on larger receptive fields
but become more sensitive to features (e.g., vertical or horizontal orientation), and even later
stages to more abstract properties such as objecthood [14]. These processes occur in parallel
(e.g., different neurons detecting stimuli for different parts of the visual field) and in a distributed,
bottom-up manner. Finally, these processes are regulated through feedback mechanisms.
Even if the visual system itself delivers erroneous percepts, as in optical illusions, we are often
able to learn through experience not to act on them. Both this representational perspective and
its post-cognitivist alternatives [22,23], despite many differences, agree that minds are open sys-
tems that learn from interactions with their environments.
4 Trends in Cognitive Sciences, Month 2024, Vol. xx, No. xx

CellPress logo


Table 1. Properties of complex adaptive systems (CASs) as applied to minds and markets

Property Description Examples in minds Examples in markets

Real economy Financial economy

Structure

Modularity Units are diverse and specialized Specialized neurons,
mental processes, brain
regions

Specialized firms, specialized workers Specialized asset classes,
specialized securities

Multilevel Larger units contain smaller units Neurons embedded within
regions, embedded within
circuits

Workers embedded within organizational
units, embedded within firms

Securities belonging to an
industry/sector

Parallelism Tasks are subdivided and
performed simultaneously

Parallel processing of
sensory information

Division of labor Diversification of portfolios

Distributed Control is decentralized No homunculus No central planner No central auctioneer

feedback System states are influenced by
internal and external feedback
loops

Reinforcement learning Supply and demand Price signals between real
and financial economy

Behavior

Adaptation The system evolves in response
to feedback

Individual learning,
biological evolution

Price adjustments, cultural evolution Price discovery,
completion of markets

Anticipation The systemmakes tacit predictions
about future external states

Prediction error
minimization

Inventory management Derivatives (e.g., futures)

Recombination Elements of the system form
novel combinations

Neural plasticity, creativity Innovation, technological change,
mergers

Financial engineering,
portfolio structuring

Nonequilibrium The system might tend toward an
equilibrium but rarely reaches it

Uncertainty, noise Real economy inefficiencies and frictions Financial market
inefficiencies and frictions

Emergence The system as a whole has
properties that individual
elements do not

Consciousness, high-level
cognition

Efficient resource allocation, market
failures, consumer sentiment, the
“invisible hand”

Efficient capital allocation,
market crashes, market
mood

Based on analyses and examples from [6–9,25]. These properties are not intended to be exhaustive, nor does every CAS exhibit all of them. The division of properties into
structural and behavioral is our own and admittedly somewhat artificial.
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Behaviorally, CASs reciprocally coevolve with their environments. This often involves recombining
components in response to feedback. For example, genetic recombination allows new pheno-
types to emerge, while cultural evolution occurs when ideas collide and recombine. Because
they are reflexively adapting to a changing environment, CASs rarely reach a true equilibrium
state; even when such an equilibrium could be theoretically identified, the system tends to
move toward it rather than achieving it. Whereas substances can transition from one equilibrium
state to another as a parameter changes (e.g., a solid to a liquid as temperature rises), brains and
societies are constantly in flux [19,24]. If oil became increasingly scarce or solar power increas-
ingly abundant, this would surely lead to many social changes, but not to a steady state. Overall,
the interactions among the parts of a CAS lead to behavior that is more than just the aggregation
of individual parts but may be qualitatively different. People can think, but neurons do not. Mar-
kets use price signals to balance supply and demand, but individual consumers do not.

A key insight to whichwe repeatedly return is thatmarkets and other collective cultural enterprises
are CASs in which the fundamental units (individual minds) are themselves CASs. Minds and so-
cieties form a multilevel CAS [25] and therefore cannot be understood independently. Societies
are composed of minds; therefore, models of collective behavior must begin with lower-order as-
sumptions about individual minds. However, minds are embedded in societies; therefore, the en-
vironment to which our minds are adapting is constantly changing. Each research program in the
following section is an effort to attack this problem.
Trends in Cognitive Sciences, Month 2024, Vol. xx, No. xx 5

CellPress logo


Trends in Cognitive Sciences
Approaches to complex systems in cognitive economics
In this section, we consider three extended examples of how to analyze the joint mind–economy
system. One approach, largely continuous with traditional representationalist approaches in cogni-
tive science, focuses on the role of narrative representations and processes in individual decision-
making, along with ways that those narratives become socially shared. A second approach relies
on simulationmodels to examine the emergent implications for social interaction of various possible
assumptions about individual cognition. A final set of post-cognitivist approaches use the science
of coordination to study the interactions among the many parts of the mind–economy system.

Narratives
Economists have long distinguished between risk (choices where the probabilities of each option
are quantifiable) and uncertainty (where probabilities cannot be calculated) [26,27]. A situation
may be uncertain because the potential outcomes cannot all be enumerated or because the under-
lying data-generating model is unknown or changing. Althoughmany real-world situations – for ex-
ample, choosing a career, starting a business, selecting a life partner – resemble uncertainty rather
than risk, standard models in both classical and behavioral economics reduce uncertainty to risk
[28]. Is it possible to craft a theory of decision-making under uncertainty without probabilities?

One suite of alternative approaches posits narratives as core to decision-making [29–37]. For ex-
ample, Shiller has argued that narratives circulating throughout the economy seem to influence
economic activity [37], such as perennial narratives about greed causing inflation or automation
causing unemployment. It appears that such narratives can create self-fulfilling prophecies or
bubbles [37,38]. Whereas Shiller’s economic analysis lives primarily at the behavioral level (narra-
tive contagion) and systems level (self-fulfilling prophecies and bubbles), a fuller accounting of nar-
ratives would examine the mental representations and processes underpinning these behaviors.

One such account is Conviction Narrative Theory (CNT) (Box 2) [35,39]. The keymental represen-
tation posited by CNT is the narrative – a structured mental model that coordinates causal, ana-
logical, temporal, and valence information to make sense of a situation. CNT is a sociocognitive
theory because it posits both cognitive processes (using narratives to explain evidence, simulate
the future, and affectively evaluate that future) and social processes (communication of narratives
or narrative fragments to gain reputation and persuade).

Evidence for CNT is drawn from a variety of sources, including laboratory experiments, large-scale
econometric data analyses, and interview studies of large-stakes financial decision-makers [40–44].
For example, one implication of CNT is that people typically adopt the most plausible narrative as a
whole rather than assigning probabilities to different narratives. Prior work in category-based induc-
tion [45] had suggested that this was true for categorical thinking; that is, if the categorization of an
object is ambiguous, people assume that the object belongs to one or the other category when
predicting its properties, rather than taking aweighted average as prior models had assumed. How-
ever, recent work suggests that this property of cognition is far more general. When engaging in
tasks such as causal explanation or economic decision-making, people act as though the single
most likely narrative is certain when using those narratives to make further predictions [40,41].

CNT has a range of implications. It challenges both classical and behavioral models in economics
by eschewing probabilities in lieu of narratives and by rejecting a monolithic construct of utility,
proposing it instead be analyzed in terms of its component emotions (a task which other work
has begun to do [46–49]). Narrative thinking does not neatly fit into the dual-systems dichotomy
of automatic versus effortful processes [50]. The narrative construction and evaluation processes
of CNT draw on a range of (seemingly automatic) heuristics [51–54], yet the process of
6 Trends in Cognitive Sciences, Month 2024, Vol. xx, No. xx
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Box 2. Conviction Narrative Theory

Theories of decision-making must explain how people solve two distinct challenges. Themediation problem refers to the
need for beliefs that can mediate between evidence obtained from the world (inference) and action taken on the world (pref-
erence) [35]. In classical decision theory, probabilities are simultaneously an output of inference (e.g., the chance that an in-
dividual, unidentified animal is from the category tiger) and an input to preference (e.g., evaluating the desirability of running
away). The combination problem refers to the need to combine beliefs and desires to decide among potential actions. In
classical decision theory, decision-makers maximize their expected utility (combining the probabilities of outcomes with their
utilities). Alternatives to this approach typically assume that probabilistic reasoning is flawed; e.g., prospect theory [125] re-
places probabilities with decisionweights that differ from the true probabilities. ConvictionNarrative Theory (CNT) [35,39] pro-
poses an entirely different architecture wherein reasoners eschew probabilities altogether.

According to CNT, a narrative is a structured representation of a situation that coordinates causal, analogical, temporal,
and valence information in a unified mental model. Although CNT builds on recent advances in the cognitive science of
causality [40,51–54], narratives are not merely causal models because they draw on a richer set of analogical associations
to background knowledge that allows decision-makers to select, from among many possible causal relationships, those
seen as most situationally relevant. Drawing on prior models of analogy and explanation [126,127], CNT posits several co-
herence principles that govern the plausibility of a narrative.

CNT posits four processes. Narrative explanation involves selecting the most appropriate narrative or constructing a new
one, based on three sources – available evidence, background knowledge, and socially supplied narratives communi-
cated by others. Narrative simulation involves running that narrative forward to anticipate plausible futures given different
choices. Narrative evaluation uses imagined affective responses to those futures to motivate approach or avoidance be-
haviors; that is, choosing that future versus a different one. Finally, narrative communication involves sharing (fragments of)
one’s internal mental representation to others, whichmight in turn be taken up in others’ representations and choices if the
communication is persuasive [128].

Rather than probabilities, CNT proposes that narratives are the currency of thought, which mediates between inference
and preference. Rather than maximizing expected utility, CNT proposes that affective evaluation of the imagined futures
generated from those narratives are the means of combining beliefs and values. Thus, the approach of CNT is distinct from
both classical decision theory and more familiar behavioral alternatives.

Trends in Cognitive Sciences
constructing and simulating narratives has the (seemingly effortful) phenomenology of a sustained
process. Finally, like earlier conceptions of narratives in economics [37], CNT suggests that the
cultural propagation and evolution of narratives is crucial to both individual and societal
decision-making, but cannot be understood solely at the individual level. If future research can in-
tegrate models of individual-level narrative representations with societal-level models of narrative
evolution [55] and its social consequences [37], such an endeavor could result in a graceful cas-
cade from the cognitive to the behavioral to the systems level.

Cognitive models of emergent collective behavior
Traditional cognitive modeling tools, such as Bayesian inference, connectionist networks, and
production systems, have successfully formalized theories of individual cognition. However,
these tools are not ideally suited for understanding cognition and behavior that transcend the in-
dividual and collective level of analysis.

The modeling tool of choice for collective behavior is the agent-based model (ABM), which has
been used in economics, political science, sociology, ecology, and other fields that examine how col-
lective phenomena emerge from individual-level behavior [56,57]. ABMs are simulations in which
agents interact using a set of (often very simple) rules; themodeler then examines the (often surprising)
collective phenomena that result. Well-known ABMs include Schelling’s model of segregation (which
showed how massive segregation can result from small individual preferences) [58] and Axelrod’s
prisoner dilemma tournaments (which demonstrated the benefits of tit-for-tat strategies) [59].

Traditional ABMs make simplistic assumptions about individual behavior that are not well-
grounded in cognition. The costs and benefits of (over)simplification are not so different from
Trends in Cognitive Sciences, Month 2024, Vol. xx, No. xx 7
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rationality assumptions inmainstream economics; in both cases, this allows themodeler to clearly
see what is driving the behavior of the model and can result in more general explanations. At the
same time, potential insight is left on the table since the emergent behavior might differ markedly
with more realistic assumptions; moreover, some collective behaviors may be intrinsically linked
to deeper-seated cognitive mechanisms. Thus, some recent ABMs introduce more plausible
cognition within individual agents while balancing this against the need for simple and transparent
models. Such models can be considered agent-based cognitive models.

For example, Social Sampling Theory (SST) (Box 3) examines how cognitive and social dynamics
affect the expression of attitudes [60]. SST draws on cognitive science theories, particularly deci-
sion by sampling [61] and relative rank theory [62], to underpin the dynamics within individual
agents and implements agent-based models to understand the dynamics between agents. Al-
though SST makes more complex assumptions about individual cognition compared to most
ABMs, the payoff is significant. Within one framework, SST can explain why individuals some-
times do express their true attitudes despite social pressure (backfire effects), why and when at-
titudes become more extreme over time (polarization), why people with popular attitudes can
nonetheless believe themselves in the minority (pluralistic ignorance), and more.

Recent years have seen increasing use of agent-based cognitive models, helping to understand
the links between cognitive and social phenomena. For example, suchmodels have been used to
show how social groups can form even in the absence of shared identity [63], how individual
memory processes give rise to collective memory phenomena [64], how environmental uncer-
tainty can drive the evolution of social learning [65], and how social comparison and magnitude
insensitivity could explain voting patterns for income redistribution [66].

Markets as extended minds
Whereas the aforementioned approaches fit within traditional computationalist paradigms, one
emerging framework draws instead on newer post-cognitivist paradigms. These approaches,
Box 3. Social Sampling Theory

Social Sampling Theory (SST) examines how an expressed attitude depends on both the individual’s own intrinsic attitude
and the attitudes expressed in their social environment [60].

SST models individual agents’ cognition using four processes for which there is independent evidence. First, agents draw
on small samples of the expressed attitudes in their social group in order to infer the distribution of others’ attitudes (as well
as one’s own) [61]. Second and third, agents experience a negative emotional reaction both to expressing an attitude
overly dissimilar from that in their social group (extremeness aversion) [129] and from their own intrinsic attitude (authen-
ticity preference) [130]. Finally, agents do not compute extremeness and authenticity in terms of the central tendency of
the distribution, but their relative rank within that distribution [62]. For example, if your neighbors vary widely across the po-
litical spectrum but the average is a center-right attitude, then it is less aversive to express a center-left attitude than if your
neighbors all express center-right attitudes. This is because the relative rank of a center-left attitude within the more widely
dispersed distribution is not very extreme, but the same attitude would have a very extreme rank compared to a tightly dis-
persed distribution.

SST can explain numerous phenomena, but we focus on polarization to illustrate how the model works. Agents are ar-
ranged in a spatial grid, endowed with a private attitude, and observe the expressed attitudes of their neighbors. At each
time step, agents have the opportunity to move to a different, random location; they decide whether to do so based on
which location maximizes utility. Since agents gain utility from authentically expressing their private attitude and disutility
from expressing attitudes that are extreme relative to their neighbors, they will move to locations where their attitudes
are less (locally) extreme. This leads to segregation: Expressed attitudes become more similar within neighborhoods over
time. Crucially, it also leads to polarization – expressed attitudes becomemore extreme over time because agents are less
prone to distort their private attitudes due to social pressure. This is a stylized demonstration of a widely applicable lesson:
as people surround themselves with sources that agree more homogeneously with their privately held attitudes, they are
more prone to express those attitudes in their most extreme form. Thus, even as the underlying distribution of attitudes
within a society remains the same, the expression of those attitudes can become ever more extreme.
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sometimes summarized as 4E cognition [22,23,67–70], propose that cognition does not occur
only in the head: cognition is embodied (occurring throughout our bodies); enactive (occurring
through sensory and motor activity); embedded (occurring through interaction with physical and
social environments); and therefore, extended (all of these cognitive activities collectively constitute
the mind). Such approaches are well-suited to understanding minds andmarkets as one extended
CAS that transcends levels of analysis. The strong version of this view is the Market Mind Hy-
pothesis (MMH) [3,25,71]: the two-pronged notion that economic activity constitutes a collective
mind (market as mind) and that mental activity comprises market-like forces (mind as market).

Informally, investors have long spoken of a ‘market mind’ over and above those of individual
investors [72,73]. The MMH suggests that the market, embodying conscious humans and
their technologies, intersubjectively extends investors’ minds, warts and all. Economists
have demonstrated how markets 'know' things that no individual market participant knows
[20], as when prices seamlessly adjust to allocate scarce resources according to supply
and demand or when the division of labor permits intricate coordination to produce complex
goods [21].

However, just as the extended mind of the market manifests distributed information, the MMH
suggests that it manifests distributed consciousness [74,75]. A century ago, the economist
Frank Knight argued that consciousness itself is the foundation of economic behavior [76], but
it was difficult to seriously elaborate this idea at the time given the primitive scientific understand-
ing of consciousness. Arguably, however, more recent advances in the cognitive science of con-
sciousness have made the mind–body problem itself more tractable [77]. The MMH therefore
proposes that it is now time to tackle the economic mind–body problem. From amacroeconomic
perspective, this consists of explaining how the (psychological) financial markets reflexively inter-
act with the (physical) real economy. Or to put the point more generally, how do individually con-
scious minds collectively coordinate behavior?

To begin answering this question, MMHdraws onCoordinationDynamics (CD) [78–81] (Box 4).
Inspired originally by theories of pattern formation in open, nonequilibrium systems [24,82], CD
uses the concepts of self-organization and the methods and tools of nonlinear dynamical systems
to understand how coordination emerges from the informationally based coupling between the
many parts and processes of living things [19]. The individual elements can be anything from neu-
rons in the brain, to limbs of a person, to persons in a group, or (in the case of MMH) to stocks,
goods, and other assets in markets. Those exchanges that use or generate information are partic-
ularly important. A notable feature of CD is reciprocal causality: as patterns form and change at
the collective level, the very components whose interaction creates them are modified in an evolv-
ing dynamic.

The information exchange between components of a complex system can be studied using dy-
namical models such as the Haken–Kelso–Bunz (HKB) model and its descendants [83]. The gen-
eralized HKB model [81], for example, shows how a broad range of coordinated behavior arises
from the nonlinear interaction among multiple elements [84]. At the level of the brain, such coor-
dination may take the form of empirically observed rhythms or neuromarkers underlying social in-
teraction [85,86]. The HKB model and its derivatives have been used to explain many different
experimental findings, from early studies of bimanual coordination and its neural correlates [87–
89] to the sophisticated patterns of ballet [90]. As a framework that has been applied to coordi-
nation in many (human) complex systems, CD provides a common theoretical apparatus for un-
derstanding cognitive economics across levels of analysis. Among those relevant to minds and
markets are rhythmic coordination, phase transitions, and fluctuations.
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Box 4. Coordination Dynamics

Coordination is fundamental to life. As a famous economist was fond of saying, think of the coordination necessary to bring
your morning cup of tea from the foothills of the Himalayas to the kitchen table!

Coordination Dynamics (CD) examines how complex systems composed of many interacting elements can produce func-
tionally relevant behavioral patterns that evolve on multiple timescales. The most elementary form of CD, the HKB model
[83], has been extended in several ways to account for the variety of coordination phenomena. One extension concerns
symmetry breaking, reflecting that the parts of a system are typically heterogeneous, while another accommodates many
interacting parts and processes.

A key concept of CD is the order parameter (OP) or collective variable. This is a number or function that physicists have
used to characterize various forms of order in matter and phase transitions between them. HKB’s use of order parameters
to capture coordination states constituted a breakthrough in understanding coordination, spawning the entire field of CD.
Why? Because the order parameter dynamics were shown to capture laboratory findings such as multiple states, transi-
tions, and fluctuations in coordination. Key dynamical aspects of the OP concern stability, instability, multistability, and
metastability. OPs carry information regarding the functional relation or coupling between the components of the system.

One key OP is the relative phase, ϕ, which is defined in the interval [0,2π]. This means that for CD, the OP can take on an
infinite number of values, but due to constraints, for example, of tasks and individual intentions [19], only a few values of the
relative phase are multi- and metastable. The symmetry breaking that creates metastability allows coordinative systems
never to get trapped or stuck in stable states but to flexibly switch between them, dwelling for variable times in one pattern
of coordination before escaping to another. This resembles William James’ metaphor of the stream of consciousness as
the flight of a bird whose journey comprises perchings (phase gathering and integrative tendencies of CD) and flights
(phase scattering and segregative tendencies of CD). In the human brain, both tendencies are crucial: the former to sum-
mon and create thoughts; the latter to release brain regions to participate in other acts of being, knowing, and doing [79].

In summary, understandingbasic formsof coordination and theways they can change represented a real step forward in bringing
CD to many different fields, including economics and social neuroscience [80], thereby opening the door to new discoveries.

Trends in Cognitive Sciences
Rhythmic coordination refers to the coordination of movements that have a regular temporal
structure. For example, think of the familiar experience of an audience clapping; sometimes,
through no intention of any individual, the audience members synchronize so that the clapping
is in unison [91]. The brain too is a 'geography of rhythms' tied to specific cognitive functions
[92]. In the economic case, rhythms can include the seasonality of certain commodity prices
and the comovement of interest rates. These modes of coordination need not be fixed; instead,
they may switch between several different possible multistable states [93], such as between a
boom and a recession, consensus versus contrarian investing, growth-phase versus value-
phase, or bear versus bull markets. Just as random clapping can give way to synchronized clap-
ping without any individual intention, so can randommarket movements give way to a crash [91].

Phase transitions occur when a system undergoes a sudden change in behavior due to a small
change in a parameter crossing a critical threshold. These have been observed in a wide range of
coordinated human behaviors, including dance and sports [90,94], as well as the human brain it-
self [95]. This suggests that the HKB-like models offer a potential framework for understanding
herding of investors in markets. In the case of herding, as for so many phenomena in complex
systems, the collective behavior cannot be deduced from aggregating the individual data be-
cause it is the interaction among the components that drives it. Perhaps the prototypical example
of a phase transition in a financial market is that from one mood to another [96], which need not
reflect the moods of individual investors. As the famed investor George Soros put it, 'markets are
not supposed to have moods . . . Yet they do' [97]. His philosophy of reflexivity is all about recip-
rocal causality in the economic system, as investors’ beliefs and emotions impact the market,
which in turn impacts those beliefs and emotions.

Fluctuations are changes to the level of an otherwise stable system component, like a
neuromarker or a price, which (typically) either revert to the original stable pattern or (rarely)
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Outstanding questions
What is the best way to implement
a cognitive model of narrative
construction and simulation? For
example, how do people rank the
plausibility of narratives when heuristics
lead to different conclusions, and how
do people select which branch of a
plausible narrative to simulate when
imagining the future?

How do cognitive and social processes
contribute to the cultural evolution of
narratives?

Are there general principles for identifying
which cognitive mechanisms should be
incorporated into an agent-based cogni-
tive model and which can be safely ab-
stracted?

Social institutions, such as markets
and governments, play powerful roles
in economic and societal outcomes.
To what extent do cognitive factors
(e.g., mental models) versus social
forces (e.g., incentives) govern their
evolution, function, and demise?

Can we use CD models to understand
not just the similarities between minds
and markets, but their reflexivity or re-
ciprocal causality? For example, by
measuring and time-stamping these
patterns in data from both investors’
minds and the market mind, might we
find the economic equivalent of neural
correlates?

What is the best way to understand
market mood and its relationship to
individual cognition? To what extent
can theories of cognition and affect in
individual minds inform the economic
mind–body problem?

To what extent are insights from
behavioral and neuroeconomics – for
example, about behavioral biases and
irrationality – reconcilable with systems
cognitive economics? Which behavioral
biases are not reducible to ecological or
resource rationality?

A major outcome of behavioral
economics has been its framework for
nudging individual behavior, which has
been both widely used and widely
criticized. What might the equivalent
prescriptive (or prophylactic) framework
systems cognitive economics look like,
if indeed it is possible?
lead to a phase change. For example, although the profit margins of companies are constantly
fluctuating, they normally revert to their long-term mean, but occasionally become bankrupt.
CD does not view fluctuations as just noise or random variation, but as a fundamental source
of variability crucial to coordination form and function. Fluctuations in the timing of movement pat-
terns can serve as sources of information for the flexible coordination of behavior between individ-
uals, allowing them to adapt to changes in the environment and maintain stable patterns of
interaction [84]. By continuously adjusting their informationally based dynamics, coordinated sys-
tems can maintain metastable tendencies [19,98]: a subtle balance between stability and flexi-
bility, allowing them to adapt to new challenges and opportunities. How this balance is struck
depends on a wide range of factors, including the complexity of the task, the make-up of the in-
dividuals, and the strength of the coupling [99].

Overall, using CD as a framework to understand how markets can act as extended minds, yield-
ing coordinated activity across multiple scales, may be a promising way forward for a post-cog-
nitive cognitive economics that complements more traditional representationalist approaches. To
the extent that prior approaches can be criticized as populating the economic world with robots –
optimal ones in the case of mainstream economics or irrational ones in the case of behavioral eco-
nomics – a post-cognitive approach is better suited to understanding the role of consciousness in
economic and social activity. The distributed approach taken by CD and MMH may also be
better-suited to understanding both minds and markets as self-organized systems without ap-
peal to homunculi-like central executives or planners.

Concluding remarks
The three approaches outlined in the preceding text – narrative approaches that encompass the
individual and social representations underlying decision-making; agent-based cognitive models
that explain how collective behavior emerges from individual cognition; and post-cognitive ap-
proaches that use coordination dynamics to understand the extended mind–market system –

all have in common a desire to conjoin cognitive, behavioral, and emergent social processes
within the same framework. These research agendas are ambitious and diverse, yet committed
to the common enterprise of transcending levels of analysis to understand how collective social
and economic behavior emerges from cognition. They exemplify the past of systems cognitive
economics and suggest its future (see Outstanding questions).

Although we have focused on three approaches that share a clear commitment to minds and
markets as complex systems, it is reasonable to ask whether systems cognitive economics is a
truly distinct approach, or whether instead this view is implicit in many other research agendas
within cognitive economics. On the one hand, we do not wish to put words in the mouths of
other cognitive economists, who may not subscribe to every tenet of the complexity-oriented ap-
proach. For example, resource rationalitymodels (Box 1) are paradigmatic examples of cogni-
tive economics (using economic notions such as scarcity and trade-offs to analyze individual
decisions, such as the allocation of effort) but generally make no attempt to analyze the systems
level of interacting agents.

However, there is perhaps a case to bemade that the enterprise of cognitive economics, taken as
a whole, is intrinsically committed to a complexity-oriented approach. For example, cognitive sci-
ence broadly is committed to multidisciplinarity, but not every cognitive scientist uses every
method (or even more than one); similarly, cognitive scientists agree that the brain is crucial to
mental activity, yet cognitive models often do not focus on the implementational level. Perhaps
the same is true for complexity. From a few basic and seemingly uncontroversial notions – that
markets are composed of minds, yet minds are embedded in markets; that both minds and
Trends in Cognitive Sciences, Month 2024, Vol. xx, No. xx 11
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markets evolve with adaptive pressures – it seems implicit that minds and markets comprise a
continuous system. Perhaps this is the case whether the analysis relies on tools traditional to cog-
nitive science (as in narrative theories), to complexity science (as in agent-basedmodels), to post-
cognitivist approaches (as in coordination dynamics), or others we cannot yet imagine.
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