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Abstract

Healthy brain function depends on balancing stable integration 
between brain areas for effective coordinated functioning, with 
coexisting segregation that allows subsystems to express their 
functional specialization. Metastability, a concept from the dynamical 
systems literature, has been proposed as a key signature that 
characterizes this balance. Building on this principle, the neuroscience 
literature has leveraged the phenomenon of metastability to investigate 
various aspects of brain function in health and disease. However, 
this body of work often uses the notion of metastability heuristically, 
and sometimes inaccurately, making it difficult to navigate the 
vast literature, interpret findings and foster further development 
of theoretical and experimental methodologies. Here, we provide 
a comprehensive review of metastability and its applications in 
neuroscience, covering its scientific and historical foundations and the 
practical measures used to assess it in empirical data. We also provide a 
critical analysis of recent theoretical developments, clarifying common 
misconceptions and paving the road for future developments.
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studies. Next, we examine a number of ‘dynamical routes’ to metastabil-
ity (that is, different types of dynamical scenario that can give rise to 
metastability) that have originated from various theoretical models6–10, 
and we review empirical studies that propose neural correlates of meta-
stability or describe its relevance for healthy and pathological brain 
function. Finally, we suggest several future avenues for theoretical and 
empirical studies of metastability. In summary, this Review aims to pro-
vide a unified account of metastability in neuroscience covering both 
its technical and practical dimensions, complementing recent efforts 
focusing on metastability from the micro-level circuits viewpoint11,12 
or from a purely dynamical systems perspective13.

The past: origins of metastability
What is metastability?
When studying the brain, it is helpful to distinguish between the fol-
lowing: (a) the physical system of interest, be it the entire brain or a 
circuit of neurons, (b) the system’s attractor landscape, a theoretical 
construct that describes the rules governing the dynamics of that sys-
tem (Box 1), and (c) observable spatiotemporal activity, such as brain 
signals captured with electroencephalography (EEG), functional MRI 
(fMRI) or electrophysiology (including local field potentials and neu-
ronal spikes), reflecting features of the system at different spatial and 
temporal scales. These three aspects of the brain are closely related: 
the shape of the attractor landscape depends on the organization 
of the physical system, such as its connectivity and the properties of 
individual elements (that is, regions and neurons), and the observed 
activity is generated by the physical system as it moves across the land-
scape (Fig. 1). Metastability, essentially, is a way of describing attractor 

Introduction
The notion of metastability is used in neuroscience to characterize two 
coexisting tendencies in neuronal populations: at any point in time, 
there is a tendency for some brain regions to work collectively by coor-
dinating their activity while other brain regions remain autonomous to 
allow the performance of specialized functions. Thus, metastability is 
thought to reflect a delicate mixture of cooperation and relative inde-
pendence between brain areas or neuronal populations in response 
to inputs from the environment. As such, metastability is considered 
a fundamental feature of brain function1,2.

Although metastability has been increasingly featured in the 
recent neuroscience literature, its empirical and theoretical origins are 
sometimes lost in the process, thus depriving the wider neuroscience 
community of an understanding of its origins and meaning3,4. Indeed, 
the plethora of studies of metastability have involved heterogeneous 
methodologies, and it can be challenging for neuroscientists to build 
a fundamental understanding about what metastability is and how 
different applications relate to each other. Moreover, researchers 
unfamiliar with this area of research could easily misinterpret applica-
tions of different signatures of metastability as indicators of conflicting 
definitions5, thereby hindering the use of metastability as a lens into 
brain function.

The aim of this Review is to provide a comprehensive account of 
metastability in neuroscience while illustrating common misunder-
standings and offering guidance for future developments. We first pro-
vide an introductory account of the origin of metastability in diverse 
literatures before exploring several signatures of metastability that 
have been measured in both empirical and computational modelling 

Box 1 | A dynamical systems theory primer
 

Dynamical systems theory is a branch of mathematics that 
studies how the state of a system evolves over time, using either 
discrete-time difference equations or continuous-time differential 
equations. These equations can be solved either analytically (pencil 
and paper), geometrically (shapes) or numerically (approximations 
using a computer) to find out how a system transits between its 
states. Solutions of the equations specify the stability of the system 
(Fig. 2a). A state is a configuration of the variables of the system at 
a particular point in time. The phase space of a dynamical system 
is the set of all possible states and, hence, contains all the allowed 
combinations of values of the variables of the system. A trajectory of 
the system is a path of the dynamical system through a succession  
of states.

Attractors, repellers and saddles
When trajectories from different initial conditions converge to a 
set of states, that set is called an attractor (Fig. 2b). An attractor 
is surrounded by its basin of attraction, which is all the points in 
phase space that flow onto the attractor. When many trajectories 
migrate away from a set of states, that set is called a repeller 
(Fig. 2b). Some dynamical systems can be illustrated as an attractor 
landscape, wherein balls illustrate the system transitioning between 
the peaks (repellers) and the valleys (attractors) (Fig. 2c). In some 
situations, noise can kick the system between stable attractors 
(Fig. 2d). When trajectories are attracted to a set of states in one 
direction but migrate away from the set in another direction, that 

set is called a saddle (Fig. 2e). Saddles can be joined together into 
cycles of saddles (Fig. 2f). Attractors can be a single point, a line or 
a cycle, or they can have more complex geometries (usually called a 
strange or chaotic attractor). A chaotic attractor exhibits dynamics 
that are highly sensitive to their initial conditions. The trajectories 
within a chaotic attractor have rich and complex geometries 
(for example, Fig. 2g shows two synchronized chaotic attractors). 
Finally, a Milnor attractor is often observed in chaotic systems 
and can possess repelling trajectories, allowing the system to 
escape to a non-contiguous attractor, like a ‘wormhole’ (Fig. 2h and 
Supplementary information S2). Thus, the Milnor attractors of chaotic 
systems exhibit saddle-like behaviour.

The shape of the attractor landscape is a function of control 
parameters, which modify the attractor landscape and can cause 
attractors (or repellers) to appear, disappear or be altered in their 
stability (Fig. 2i). This happens either at a bifurcation or at a crisis 
(when an attractor hits its boundary following parameter tuning). 
In contrast to control parameters, which have influence on the 
system, an order parameter is a collective observable property of 
the system, such as synchrony between the elements. An order 
parameter is a feature of the system (or a subsystem) and not of an 
individual component, and it acts as a ‘readout’ of the system as a whole.

Because states in neuronal systems are not easy to define165, 
dynamic instabilities, which refer to behavioural changes of the 
system in the vicinity of a bifurcation, are studied to identify relevant 
order parameters166.
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landscapes that exhibit specific features, that is, it refers to how the 
dynamics are governed.

The characterizing features of metastable systems can be 
described by comparing them to other types of stability described by 
dynamical systems theory (Box 1). The simplest form of stability is mon-
ostability (Fig. 2), which corresponds to when the system has a single 
attractor (that is, when there is one stable solution to the differential 
equation describing its dynamics). A slightly richer type of dynamics 
can be observed in systems with two attractors that exhibit bistability 
(Fig. 2): the system will settle into one of the attractors depending 
on the initial conditions, but sufficiently large noise fluctuations can 
force the system to switch from one attractor to another via a sequence 
of states within the phase space (known as a trajectory) (Fig. 2). More 
generally, a system is said to exhibit multi-stability when multiple 
attractors in the dynamics exist14 (for more technical discussions 
on multi-stability, see refs. 15–17). Finally, a system is said to exhibit 
metastability when it exhibits ‘unstable attraction’, that is, its attractor 
landscape includes regions that attract in some directions but repel in 
others (called ‘saddles’; Box 1), pulling the system towards the region 
then pushing it away. Hence, a metastable system approaches succes-
sive saddle-like regions, dwells near each for some time, and sponta-
neously escapes to visit another. In contrast to multi-stable scenarios 
with attractors that pull and trap trajectories, metastability works 
more like a children’s slide: when the slide is nearly flat, the dynamics 
slow down, giving the impression of nearly stopping (‘attraction’), 
then set the system free to continue its trajectory. Therefore, while in 
multi-stable systems, a trajectory can only escape from an attractor 

owing to noise, and trajectories in metastable systems transition 
between repelling and attracting regions ‘by design’ (Box 2). As such, 
metastability is more flexible than multi-stability but more structured 
than randomness1.

A consequence of the previous argument is that metastability 
refers to a specific type of dynamics that may take place in systems 
that exhibit patterns that recur either in repeatable sequences9,18 or 
flexible alternation10,19. Thus, metastability corresponds to a specific 
type of dynamic behaviour, that is, something certain systems do, and 
not to a single specific mechanism, that is, how these systems do it20. 
In fact, metastability can be realized by several different mechanisms 
(as discussed in the section ‘The present: dynamical mechanisms and 
drivers of metastability’).

A brief history of metastability
At this point, it is helpful to understand how different fields indepen-
dently came to develop analogous notions of metastability, in turn 
influencing different perspectives of neuroscientists on metastabil-
ity and its application to study brain function. Below, we provide an 
outline of how metastability has been studied in thermodynamics21, 
human motor coordination22–24, mathematics25,26, and complex systems 
and chaos27,28.

Arguably, the first report of a metastable phenomenon can be 
found at the turn of the nineteenth century, when a chemical sys-
tem (a supersaturated solution of sodium nitrate) was reported to 
be in a ‘metastable condition’ such that its transition time to a stable 
state exceeded the relaxation time21, that is, the system took longer 
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Fig. 1 | From physical substrate to attractor landscapes and spatiotemporal 
patterns in data. Macroscale (top row) and microscale (bottom row) 
representations of the three aspects that need to be distinguished when 
discussing metastability in neuroscience. a, The first aspect is the physical 
system of interest, be it the entire brain (top) or a circuit of neurons (bottom). 
b, The second aspect is the organization of this system that determines the 
attractor landscape, a theoretical construct that describes the rules governing 
the dynamics of that system. c, The third aspect is the observable spatiotemporal 

activity (for example, the regional blood oxygen level-dependent signals from 
functional MRI at the macroscale or neuronal spike trains at the microscale) 
generated by the physical system according to the attractor landscape, as then 
viewed through a noisy observation. At both the microscale and macroscale, 
it is possible to identify features of metastable dynamics such as the presence of 
transient states. Part b is reprinted from ref. 160, CC BY 3.0. Top image in part c is 
adapted from ref. 105, Springer Nature Limited. Bottom image in part c is adapted 
from ref. 127, CC BY 4.0.
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than expected to reach its stable state, so that its period of instability 
was paradoxically more persistent than expected (hence the name). 
A more recent example of such long transient behaviour is found in 
supercooled water, which remains liquid after being cooled below 0 °C 
before abruptly freezing29. This phenomenon inspired neuroscientific 
investigations using neural network models in the 1990s30–32. However, 
what is now studied as metastability in neuroscience does not follow 
this form (and, hence, these approaches will not be discussed further).

The origins of metastability as currently studied in neuroscience 
can be traced to a behaviour first observed and studied in Labrus fish: 
these fish coordinate their swimming with their fins ‘almost-in-sync’ but 
intermittently lose this synchronization33. This type of relative coordina-
tion was later systematically investigated and formalized in the study of 
the collective dynamics of human coordination23,34. For example, when 
performing experiments in which human participants flexed their index 
finger against a metronome, it was observed that as the metronome 
frequency (a control parameter set by the experimenter) was increased, 
participants progressively switched from off-beat to on-beat flexing, 
became almost-in-sync with the metronome, and finally lost synchro-
nization between the finger movements and the metronome34,35. The 
relative coordination of the almost-in-sync condition was described as 
metastability in dynamical systems terms1 and formalized into a math-
ematical model22,34,36 (Supplementary information S1). In addition, the 
cyclic behaviour of being almost-in-sync, to escaping through desyn-
chronization and to returning to being almost-in-sync, was described as 
metastable, as no stable states existed, just a succession of tendencies 
for integration (between movement and metronome to maintain syn-
chronization) and segregation (loss of rhythm between movement and 
metronome)1,3,34,35. This cycling phenomenon was quickly recognized 
as potentially relevant for studying the interplay of integration and 
segregation in brain dynamics7,37,38.

Around the same time, studies in computational brain modelling 
using chaotic systems have used the concept of itinerant dynamics 
to explain patterns of transiently stable brain activity7,10,39 (see Sup-
plementary information S2 for an account of chaotic systems and 
chaotic itinerancy40). This literature developed the characterization of 

metastable behaviour to include cluster formation41,42 and sequential 
switching between multiple metastable states9,10,43. Complementing 
this line of work, studies on the dynamics of percolation26, in which 
nodes are added to a network, have also led to useful applications to 
study brain dynamics44–48.

In summary, different scientific fields arrived at similar notions 
of ‘metastable behaviour’, which set the stage for how metastability is 
investigated today in neuroscience. We next discuss how  metastability 
has been used to investigate brain function over the past 20 years.

The present: signatures of metastability 
and empirical applications
Signatures of metastability
Studying metastability in brain data — whether from electrophysi-
ological (for example, individual spiking or bursting neurons) or 
neuroimaging (for example, fMRI) recordings — presents a formi-
dable methodological challenge. In effect, a thorough evaluation 
of metastability would require a full reconstruction of the attractor 
landscape of the neural dynamics, which would often include a large 
number of attractors (Supplementary information S1). This difficulty 
has motivated the search for heuristic signatures of metastability that 
are suitable for efficient estimation from current electrophysiological 
and neuroimaging data. This section reviews several heuristic markers 
of metastability that have been introduced in the neuroscience litera-
ture that allow tractable computation and have led to neuroscientific 
insights. Their key conceptual features are illustrated in Fig. 3, and we 
have made a MATLAB49 code library available to calculate these signa-
tures from empirical data (see Code availability statement). Discussion 
about additional markers of metastability and associated equations 
can be found in Supplementary information S3.

It is important to note that these signatures do not disambigu-
ate metastable or multi-stable dynamics, as will become clear when 
describing each signature. Thus, these signatures are not meant to 
be used as tests for deciding whether a system is metastable or not, 
but only to assess the degree to which a given system displays specific 
necessary, but not sufficient signatures for metastability. In practice, it 

Fig. 2 | Different types of stability and attractors. a, Different types of stability. 
b, This part shows a trajectory map of a one-dimensional dynamical system. The 
horizontal axis presents a one-dimensional phase space (x). The horizontal dark 
blue arrows indicate the direction of the flow in the phase space determined by 
the differential equation (dx/dt), which is plotted in light blue as a function of x.  
Where dx/dt is above or below the horizontal line, the trajectories in the state 
space flow to the right or left corresponding to a positive or negative change 
of the state variable x. Where the function intersects with the horizontal axis, 
there is no change to the state, making that value of x a fixed point. The slope 
of the function at the fixed point indicates its stability: a negative slope implies 
an attractor, whereas a positive slope indicates a repeller. By convention, 
attractors are represented by a filled circle, whereas repellers are shown as 
empty circles. c, This part illustrates the attractor landscape of the same system. 
The balls illustrate the system transitioning between valleys (attractors) and 
peaks (repellers). d, In systems with two or more attractors, noise can allow 
the system to spontaneously switch between stable attractors. e, In a one-
dimensional system, the saddle is represented as a dual-coloured circle. The 
blue line shows the flow towards the saddle fixed point and the red line shows 
the flow away from the saddle. f, Trajectories sometimes link saddles when they 
are repelled from one saddle and attracted towards another. This part illustrates 
a cycle of four saddles. g, This part shows synchronized chaotic attractors161. 
The dynamic variables are the mean pyramidal cell membrane potential V, the 

mean inhibitory cell membrane potential Z and the mean proportion of open 
potassium channels W. h, Synchronized chaotic attractors can give rise to Milnor 
attractors with riddled basins (see Supplementary information S2). A small 
number of trajectories are attracted to this special attractor. However, because 
its basin of attraction is full of holes that connect to other regions of the phase 
space, some trajectories flow out to a non-contiguous attractor basin. i, This part 
shows how multi-stable dynamics change to metastable dynamics as a control 
parameter varies owing to fixed-point memory. The top row is the bifurcation 
diagram and the bottom row is the trajectory map. The left panel shows two 
stable attracting fixed points (black and purple filled circles) and two unstable 
repellers (open circles) in the multi-stable regime when the control parameter of 
the model is below the critical point. The middle panel shows that as the control 
parameter varies and reaches the critical point (top), the trajectory curve shifts 
vertically upwards (bottom), which brings a stable and an unstable fixed point 
together, creating a saddle node. The right panels shows that if the control 
parameter goes just beyond the critical point (top), the saddle is annihilated, 
leaving the memory of the fixed point in which the saddle once existed. Although 
the attractor no longer exists, trajectories are still attracted to this memory 
wherein they slow down before eventually escaping (a so-called ghost attractor). 
Part f is adapted with permission from ref. 162, SPIE. Part g is adapted with 
permission from ref. 161, Elsevier.
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is common to contrast the values of these markers obtained in groups 
of individuals (for example, patients and control individuals) or experi-
mental conditions or manipulations, and assess whether a specific 
signature of metastability has increased or decreased.

Temporal variability of the Kuramoto order parameter. Metastabil-
ity in the brain has been claimed to reflect coexisting tendencies for 
integration and segregation40,50. When conceptualizing oscillatory 
dynamics as supporting cortical processing, integration can be inter-
preted as synchronization (as discussed, for example, in ‘communi-
cation through coherence’51,52 and other similar frameworks53, but 
note also recent critiques of such approaches54,55), and segregation 
would involve a loss of synchrony with regions pursuing specialist 
functionality. Building on these intuitions, Shanahan proposed the 
temporal variance of the global synchronization, technically known as 
the Kuramoto order parameter56 (KOP), as a signature of metastability57. 
A small variance, as measured by the standard deviation of the KOP 
(std-KOP), implies that the degree of synchronization is stable over 
time, whereas if the variance is high, then the degree of synchronization 

between the nodes must be constantly changing (see Fig. 3a and 
Supplementary information S4 for more technical details and Video 1 
for an animation of the dynamics). Note, however, that a high variance 
of the KOP could reflect either metastable or multi-stable dynamics, 
or it could even reflect mere random fluctuations within the system 
(see the section ‘The future: open questions and opportunities’). This 
signature has proven to be extremely versatile, leading to numerous 
applications spanning both empirical studies and computational 
models58–69, which are reviewed in later sections.

Temporal variability of dynamic functional connectivity. 
Time-varying functional connectivity among brain regions can be cap-
tured with statistical relationships such as Pearson correlation or phase 
difference70 extracted from whole-brain images recorded over time. 
The resulting patterns of correlation or phase-difference relationships 
between the regions in the time-varying functional connectivity matri-
ces represent the repertoire of configurations spontaneously visited 
by a system over time. The first eigenvalue of the instantaneous func-
tional connectivity matrix, known as the spectral radius, captures the 

Box 2 | Common misconceptions about metastability
 

There are a number of misconceptions relating to metastability. 
The first misconception is that observing switching between distinct 
states with long periods of stability is enough to infer metastability. 
However, this is not strictly correct: within dynamical systems theory, 
this is a necessary but not sufficient condition for metastability. 
Indeed, this feature is shared by both metastable and multi-stable 
systems. For metastability, there must be coexisting tendencies for 
attraction and repulsion, that is, there must be unstable (saddle-like) 
features in the attractor landscape40,50.

The second misconception is that signatures of metastability 
are alternative definitions of this concept. In fact, the different 
signatures of metastability (as discussed in the section ‘The 
present: signatures of metastability and empirical applications’) 
are not alternative definitions but represent different ways to assess 
the dynamics associated with the phenomenon of transient states, 
irrespective of their dynamical origins. The signatures are heuristic, 
being particularly useful when a full analysis of the dynamical system 
at hand (that is, reconstruction of its attractor landscape) is not 

feasible, often because the required volume or granularity of data is 
not available.

The third misconception is that metastability is in the data. 
Actually, metastability is a property of a dynamical system (that is, 
a mathematical or theoretical model aimed at capturing empirically 
observed phenomena) and not of data. More specifically, it is a way of 
characterizing certain attractor landscapes. Although no attractors 
(only saddles) exist in a metastable system, and so more correctly, 
we could refer to a dynamical landscape, we retain the standard 
nomenclature from dynamical systems theory of attractor landscapes.

Another misconception is that noise is necessary for metastability. 
Although noise is necessary for switching within multi-stable 
systems, metastable cycling can occur in the absence of noise. 
In dynamical systems, metastability can arise from time delays and 
heterogeneities in network connectivity that create asymmetries. 
The addition of noise to these models can affect the stability of 
features of the dynamical system, such as duration of143, or switching 
between, transient states101, but does not negate their metastability.

Fig. 3 | Practical signatures of metastability. Metastability has been associated 
with simultaneous tendencies for coupling and decoupling of synchronized 
regions and for integration and segregation of disparate regions. Signatures of 
metastability in empirical data are grounded in these fundamental associations. 
The signatures are estimated from instantaneous phase, amplitude correlations 
or relative phase differences. a, The most common signature of metastability 
is the variability over time of the Kuramoto order parameter (KOP), which tracks 
the overall synchrony in a system of oscillators, wherein the variability is typically 
measured as the standard deviation of the KOP (std-KOP). b, A signature that 
can be estimated directly from the functional MRI (fMRI) data or from Hilbert-
transformed fMRI data is the variability measured as the standard deviation 
over time of the spectral radius (largest eigenvalue obtained with eigenvector 
decomposition) of time-resolved functional connectivity matrix (std-SPECT) 
(note that many ways of obtaining time-resolved functional connectivity exist). 
c, Using the Hilbert transform to extract instantaneous phase from fMRI data, 
the variability of the intrinsic ignition over time, which is based on relative 

phase differences, is another signature. Intrinsic-driven ignition is obtained by 
identifying ‘driver events’ (unusually high spontaneous activity in fMRI72,163) and 
measuring the magnitude of the concomitant activity occurring in the rest of 
the brain within a short time window (in fMRI studies, it is common to use the 
duration of the haemodynamic response function). The variability is measured 
as the standard deviation of intrinsic ignition (std-IGNITE). d, Again, using 
Hilbert-transformed fMRI data, estimates of relative phase differences between 
regions segregate the regions into those that are aligned with the overall phase 
alignment of the brain and those that are aligned in antiphase. Over time, the 
contribution of each region to this antiphase alignment varies, and the mean 
temporal variance of this contribution (mean-VAR) is another signature of 
metastability. The contribution variance is calculated from the time-varying 
leading eigenvector (the eigenvector with the largest eigenvalue) of the phase-
aligned connectivity matrix. TR, repetition time. Part a is adapted from ref. 61,  
CC BY 4.0. Part c is adapted from ref. 73, CC BY 4.0.
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effective dimensionality of the matrix. A large value indicates that the 
configuration at that time has only a few degrees of freedom (that 
is, elements behave similarly), whereas a small value suggests many 
degrees of freedom (that is, elements are free to behave relatively 
independently). Hence, variability (for example, the standard devia-
tion) of the spectral radius over time (std-SPECT) captures variability 
between integration (large spectral radius, reflecting interdependence) 
and segregation (small spectral radius, reflecting independence) and, 
thus, has been proposed as a signature of metastability71 (Fig. 3b). This 
signature has exhibited empirical usability, for example, in identify-
ing an association between reduced metastability and ageing in fMRI 
recordings from a longitudinal study in rats71.

Temporal variability of intrinsic ignition. The spontaneous activation 
of one brain region or neuronal ensemble (as captured by a moment of 
unusually high activity) often propagates to other regions or ensemble, 
respectively, ‘igniting’ similar high-activity events elsewhere within a 
short time window. The extent of propagation of such ignition events 
may be seen as reflecting the level of neural integration. Accordingly, 
the temporal variability (for example, the standard deviation) of the 
breadth of intrinsic ignition (std-IGNITE) (that is, the number of other 
regions or ensembles that are ignited) reflects the variability in 
integration, which can be seen as part of the integration–segregation 
tendency that is intuitively associated with metastability72 (Fig. 3c). This 
signature has been successfully applied to fMRI data to characterize 
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the dynamical complexity underlying disorders of consciousness73, 
ageing74 and meditation75.

Temporal variability of phase alignment. Several studies have inves-
tigated the relationship between time-varying functional connectivity 
and signatures of metastability61,66,76, wherein the former is assessed in 
terms of phase alignment and the latter is based on overall synchrony. 
However, it is not straightforward to conceptually align these two 
approaches, as they use different types of phase relationship. To over-
come this methodological limitation, a new signature based on relative 
phase was proposed77 that replaces overall synchrony (which aver-
ages phase overall regions57) with overall phase alignment (which 
considers whether each individual region is in phase or in antiphase 
with respect to the overall phase direction) (Fig. 3d). The contribution 
of individual regions to phase alignment is captured in the leading 
eigenvector (or first principal component) of the functional connectiv-
ity matrix78, and thus the temporal variance of its entries (and not the 
eigenvalues as in std-SPECT) captures the flexibility of each brain region 
to modify its phase alignment and, hence, their participation in tran-
sient coalitions with other regions. The mean of this temporal variance 
(mean-VAR) overall brain regions (or a subset of brain regions) has 
been proposed as a signature of metastability, reflecting the balance 
between global integration and functional segregation (see Supple-
mentary information S5). This signature of metastability was higher in 
people with early psychosis and individuals with chronic schizophrenia 
than in healthy control individuals, based on fMRI recordings77.

Empirical studies of metastability
The signatures of metastability at the macroscopic scale described 
above focus on variability in the dynamics associated with transient 
states. The interpretation of the transient states themselves — and their 
relationship with anatomy, cognition, individual differences, pathology 
and even consciousness — has been the subject of numerous inves-
tigations through a variety of approaches for studying time-varying 
functional connectivity in fMRI and EEG in humans and other species79–90 
(see ref. 91 for an authoritative review). Below, we review how the sig-
natures of metastability above have been used to identify differences 
in behaviour and cognition across conditions and groups on (macro-
scopic) neuroimaging data. For an overview of the complementary 
insights provided by electrophysiological recordings at the level of 
neurons and local field potentials, see Supplementary information S8.

Currently, normative values are not available for the different 
signatures, and so the most common approach is to compare differ-
ent groups or conditions against a reference, such as healthy controls. 
Moreover, these signatures alone do not confirm metastability in 
the underlying dynamics but rather suggest links between the dynam-
ics underlying the transient states and brain function across a spectrum 
of experimental and neurodevelopmental conditions.

Studies in humans59 and rats71 indicate that reductions in metasta-
bility signatures generally occur with ageing, when older groups are 
compared with middle-aged people (std-IGNITE) and when time-point 
signatures are compared across the lifespan of rats (std-SPECT). Signa-
tures of metastability seem to be reliable across multiple scans in healthy 
young adults61 (std-KOP). Interestingly, estimates of metastability in 
babies born at full-term were higher than in premature-born babies92 
(std-IGNITE). These results suggest that metastability may increase 
during in-utero development and then decrease in healthy ageing.

Signatures of metastability have been applied to study neurode-
generative and neuropsychiatric illnesses at the macroscopic scale. 

For example, in a study of neurodegeneration in patients with Alzheimer 
disease (AD), the magnitude of a signature of metastability (std-KOP) 
was lower in these individuals than in healthy control individuals59. 
Additionally, a significant association was found between global 
cognitive performance and the signature of metastability both in 
individuals with AD and in people with mild cognitive impairment (MCI). 
Congruent with these findings, another empirical study has found 
gradual decreases in std-KOP from people with (healthier) subjective 
cognitive impairment (SCI) to people with partially affected (MCI) and 
more severely affected cognitive states (AD)93. The signature of meta-
stability that unveiled these graded differences reflects the variability in 
the global synchronization across the entire brain. These results suggest 
that decreases in the magnitude of signatures of metastability across 
ageing may be associated with cognitive impairment or vice versa. 
However, there is evidence that reductions in signatures of metastability 
can also occur owing to perturbations, whether pharmacologically by 
anaesthesia94 or physically by traumatic brain injury62.

The previous results should not lead to the conclusion that any 
increase in metastability at the macroscale is associated with beneficial 
effects. Indeed, a study on people with a diagnosis of early psychosis 
or chronic schizophrenia77 has revealed that mean-VAR was higher in 
these individuals than in healthy control individuals. Moreover, another 
study has reported a modular increase in metastability (std-KOP) in 
people with schizophrenia compared with healthy individuals64.

Together, these results (although coming from different signa-
tures) may be thought to suggest that both increases and decreases 
in signatures of metastability can be associated with different cogni-
tive and neuropsychiatric disorders as outlined in Table 1. In other 
words, there may be a ‘sweet spot’ for metastability in healthy brain 
functioning2,95.

The present: dynamical mechanisms and drivers 
of metastability
The many routes to metastability and transient states
In contrast to empirical studies, computational models are fully avail-
able for inspection and manipulation by the researcher, allowing rela-
tionships between system behaviour and model parameterization to 
be probed to address questions about causality96. This is particularly 
relevant for identifying the potential neural underpinnings of meta-
stability, which could be amenable to treatment in disorders in which 
metastability is disrupted. Below, we review a selection of computa-
tional studies highlighting the different dynamical mechanisms that 
can give rise to metastability. Additionally, to address ambiguity in the 
literature, we also appraise studies in which transient states and com-
plex spatiotemporal patterns arise from noise-driven multi-stability. 
Note that Fig. 4 provides a summary of the reviewed dynamical routes 
to metastability, with more technical information about these routes 
provided in Supplementary information S1, S2, S4 and S6. The seminal 
models of metastable coordination dynamics in behavioural studies 
are reviewed in Supplementary information S1.

A key outcome from the modelling work is the identification of 
symmetry breaking as a key enabler of metastability. Symmetry break-
ing is a process in which a model parameter is varied so that asym-
metry suddenly arises in the system. In dynamical systems terms, 
symmetry refers to the extent to which the dynamic of the system 
is invariant of permutation of its components, and hence asymme-
try happens when this invariance is broken97. Symmetry breaking 
can arise from systematic variations of different model parameters, 
including the connectivity between regions, the local properties of 
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the individual regions, or the addition of noise (to name a few)98,99. 
We point out the specific source of symmetry breaking in the models  
reviewed below.

Metastability via fixed-point memory. In 1990, Kelso et al. published a 
mathematical model34 that aimed to explain the metastable behaviour 
observed in bimanual coordination studies of finger flexing with a pac-
ing metronome34. This first model of metastability was based on the 
broken symmetry between the intrinsic frequencies of the metronome 
and the flexing finger. The results showed that phase and frequency 
synchronization between the metronome and the flexing finger were 
replaced by tendencies for in-phase and antiphase coordination, inter-
spersed with desynchronization and phase wandering. Furthermore, 
when the control parameter (the metronome frequency) was set to 
a particular frequency, a bifurcation occurred wherein a fixed point 
(on-beat attractor) and a repeller (off-beat repeller) collided, resulting 
in their annihilation. Crucially, although no attractor was now present in 
the system, trajectories in the system were still attracted to where it 
once was, that is, to the memory of the fixed point (Fig. 2). Approaching 
this region, the system slowed down, dwelling for some time, before 
escaping to other regions of the attractor landscape through desyn-
chronization and phase wandering. The spontaneous dwell and escape 
behaviour of the system indicated metastable dynamics (see Supple-
mentary information S1 for the model equations and extensions and 
Video 2 for the behaviour of the generalized model).

Metastability via cycles of saddles with time delays. In 1993, 
Hansel et al. published a model of weakly coupled Hodgkin–Huxley 
neurons100 without added noise but with broken symmetry param-
eterized through time delays101. This model exhibited clustering of 
oscillators into two groups in antiphase with individual oscillators 

switching between the clusters, with the frequencies of the individual 
oscillators progressively slowing down before switching. These dynam-
ics are owing to connected saddles, thereby demonstrating that the 
system was metastable (see Video 3 for the behaviour and Supplemen-
tary information S6 for the model equations and parameter settings 
for the video). Kori and Kuramoto102 showed that this behaviour was 
also present in a model of neuronal bursting103 and demonstrated 
that the slow switching between the clusters of oscillators could be 
invoked when the symmetry breaking was parameterized through 
randomly distributed time delays or heterogeneous coupling102. More 
recently, metastable behaviour was observed without noise, in both 
a whole-brain model of coupled oscillators using a conduction delay 
matrix derived from structural connectivity69, and a structural con-
nectome derived from diffusion MRI modelled together with time 
delays104,105. Together, these studies illustrate how time delays or hetero-
geneous connectivity can lead — even in the absence of noise — to  
metastability.

Metastability via cycles of saddles with asymmetric stimuli. 
Repeated sequences of metastable states were observed in a gener-
alized high-dimensional Lotka–Volterra model that described the 
dynamics of firing rates in an inhibitory network subject to an external 
stimulus106. This dynamical model is the canonical model for winnerless 
competition in the evolution of species9,106,107. In the computational 
model, trajectories in the system moved towards a saddle, slowed down 
and eventually moved on towards the next saddle in the sequence. 
Symmetry breaking in the model was achieved through an asymmet-
ric stimulus matrix, which governed the stimulation strength to any 
neuron depending on a connectivity rule106. This model can be used 
to explain how such dynamics arise, why they can be robust to noise, 
and how the nature of the saddles ensures flexibility.

Table 1 | Investigations of metastability in functional MRI empirical studies

Study groupa Signature of 
metastability

Findings Ref.

Healthy young adults std-KOP Global metastability was reliable across multiple scanning sessions 61

Individuals with AD or MCI std-KOP Global metastability was reduced in people with AD or MCI compared with controls, but it was higher in 
people with AD than in those with MCI with concomitant reductions in cognitive performance

59

Individuals with AD, MCI or SCI std-KOP Global metastability was highest in SCI and progressively reduced in MCI and AD 93

Individuals with schizophrenia std-KOP Increased metastability in the salience network was associated with the negative symptoms 
of schizophrenia

64

People with early psychosis or 
schizophrenia

mean-VAR Global and local metastability was higher in people with schizophrenia or early psychosis than 
in healthy controls

77

Healthily ageing rats std-SPECT Metastability decreased progressively with ageing 71

Healthily ageing individuals std-IGNITE Global metastability was lower in the older group than in the middle-aged group 74

Premature babies std-IGNITE Preterm neonates exhibited reduced metastability in the default mode, dorsal attention and the salience 
networks compared with neonates born at full-term

92

Anaesthetized macaques std-KOP The awake condition had higher levels of global metastability than the anaesthetized state, with different 
anaesthetics reducing global metastability by different degrees

94

Individuals with TBI std-KOP Global metastability was reduced in people with TBI compared with healthy control individuals, with 
the reductions in TBI being found in the salience network, a left-fronto-parietal network and a dorsal 
attention network

62

People practising meditation std-IGNITE Experienced meditators showed higher metastability during resting state than inexperience meditators 75

AD, Alzheimer disease; MCI, mild cognitive impairment; mean-VAR, mean variance of the leading eigenvector; SCI, subjective cognitive impairment; std-KOP, standard deviation of the 
Kuramoto order parameter; std-SPECT, standard deviation of the spectral radius; std-IGNITE, standard deviation of intrinsic ignition; TBI, traumatic brain injury. aUnless stated otherwise, 
the studies involved humans.
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Metastability via time delays. Metastable ‘chimaera’ states108–110, 
wherein partial synchronization and desynchronization coexist, were 
found in a community-structured Kuramoto model with symmetrically 
coupled identical phase-lagged oscillators without added noise57. 
Symmetry breaking in the model was induced through the phase lags, 
that is, via time delays. The system transitioned from disorder to par-
tial order, wherein spontaneously formed coalitions of phase-locked 

oscillators coexisted with desynchronized individual oscillators. The 
existence of saddles in this specific generalization of a Kuramoto model 
(that is, oscillators identical in size and natural frequency, community 
structure, and no noise) has, to our knowledge, not been formally inves-
tigated. This model of metastability was later used, in a subsequent 
work, to investigate the mechanisms underlying a proposed account 
of consciousness111. Building on the global workspace theory112,113, 

Dynamical phenomenon Attractor landscape Trajectory map Characteristics from model and model data 

Metastability

Multi-stability

• Noise independent

• Noise independent
• Dynamic clustering of neuronal components
• Repeated sequences of spatial patterns
• Ordered sequences of spatial patterns 

• Noise independent
• Dynamic clustering of neuronal components
• Random sequences of spatial patterns 

Fixed-point memory

Winnerless competition

Milnor attractors

• Noise driven
• Dynamic clustering of neuronal components
• Repeated sequences of spatial patterns
• Ordered sequences of spatial patterns

Saddle cycles back to itself

Cycle of saddles

Chaotic itinerancy

Attractor hopping Weakly stable attractors

Fig. 4 | A graphical overview of routes to transient state switching. 
The presence of switching between multiple transient states (or between 
coordination and periods of lack thereof) can arise from metastability and 
multi-stability164. Multiple dynamical mechanisms can account for each family 
of dynamical stability, yielding sometimes different metastable characteristics. 
In the dynamics wherein the system cycles back to itself, there are actually 
no attractors, only the memory of the fixed point that was annihilated at a 
bifurcation. This fixed-point memory still attracts trajectories, but they slow 
down as they approach the metastable regime, giving the impression of stability, 
before escaping the region to eventually being attracted again to the memory. 
When the dynamics are explained as a cycle of saddles, the system moves to one 
saddle and remains there for a while before moving on again to the next saddle in 

the cycle. The cycle of saddles gives rise to either a repeated sequence of spatial 
patterns or a network containing repeated and unique sequences of spatial 
patterns. When the dynamics are explained through chaotic itinerancy, the 
system stays close to a destabilized Milnor attractor for a while before bursting 
out through the riddled basin (that is, full of holes) of the chaotic attractor to 
arrive close to another Milnor attractor — like travelling through a ‘wormhole’. 
In multi-stable switching, the attractors are weakly stable, that is, they are close 
to a critical point, and the landscape has consequently flattened. Noise can 
now drive the system away from the weakly stable attractor towards another 
attractor in the system. The winnerless competition figure image is adapted 
with permission from ref. 162, SPIE.
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conscious processing was posited to entail competition between coali-
tions of specialist processes to access the global workspace and broad-
cast their influence throughout the brain114–116 (see  Supplementary 
information S4).

Metastability via chaotic itinerancy. Complex dynamics suggestive of 
metastability were found with synchronized chaotic attractors in a local 
discrete-time model with noise42 and a whole-brain continuous-time 
network of conductance-based117 neural mass models that were param-
eterized to exhibit chaotic behaviour118 without added noise. These 
studies are focused on a phenomenon known as chaotic itinerancy 
which corresponds to relatively long periods of high synchronization 
that are punctuated by brief bursts of desynchronization10,40,42 (Box 1 
and Supplementary information S2). Moreover, a reduction in cou-
pling between the chaotic oscillators was found to induce symmetry 
breaking in these systems. The models exhibited chaotic synchroni-
zation (see Supplementary information S2 for how synchronization 
is computed in chaotic systems that are not periodic)119,120 and desyn-
chronization, yielding complex dynamics including the appearance of 
phase-shifted synchronized clusters and oscillators switching among 
these clusters42,118. These studies illustrate metastability in chaotic sys-
tems, in which switching can occur between ‘Milnor attractors’ (which 
repel trajectories in some directions similar to a saddle) that are not 
directly contiguous in the dynamic landscape (see Supplementary 
information S2 for a more detailed and technical account of chaotic 
itinerancy and Milnor attractors).

We have reviewed several models of metastable dynamics. How-
ever, transient states and complex spatiotemporal patterns also arise 
from noise-driven multi-stability. We, therefore, review some models 
of multi-stability to gain an understanding of the differences between 
these dynamical phenomena.

Multi-stability in a whole-brain model. Resting-state functional 
connectivity, as observed, for example, in human fMRI data, has been 
proposed to arise as the result of noise-driven switching between 
bistable attractors in a corticothalamic model121,122 or noise-driven 
exploration of multi-stable states in a whole-brain model of neuronal 
activity123. To investigate these proposals, a whole-brain global spiking 
attractor network model incorporating human structural connectivity 
was fitted to empirical fMRI data124. The results revealed a bifurcation 
determined by the global (inter-areal) coupling strength, at which the 
number of attractors grow from one to five. These results suggested 
that resting-state functional connectivity was influenced by latent or 
ghost attractors, that is, ‘memories’ of fixed points beyond the critical 
point (Box 1) that induced structure in the noise-driven explorations 
at the brink of the bifurcation124. The transient recurrent patterns of 
functional connectivity — or ‘resting-state networks’ — observed con-
sistently across subjects in resting-state fMRI, have been proposed to 
be signatures of ghost attractors125.

Multi-stability in spontaneous and evoked cortical activity. Recur-
rent sequences of spatiotemporal patterns, extracted and decoded 
with hidden Markov models, have been found in studies of individual 
spiking neurons in the gustatory cortex of rats126–128. These patterns 
were investigated in a recurrent network of spiking neurons organ-
ized into excitatory, inhibitory and unstructured populations127. 
Bifurcations were extracted analytically to identify fixed points (that 
is, attractors) as synaptic weights within excitatory clusters varied. 
It was proposed that internally generated noise — as a consequence 

of excitation–inhibition balance — drove the system among these 
attractors, yielding repeated sequences of spatiotemporal patterns of 
neuronal activity. Similar patterns were found in simulations of evoked 
and resting-state conditions pointing to the potential role of synaptic 
plasticity for learning external stimuli.

Multi-stability in models with turbulent behaviour. Turbulence, a 
property of fluids when a smooth flow breaks up into whorls and eddies, 
has been found to provide a fundamental principle governing optimal 
mixing and efficient transfer of energy over space and time129. Recent 
research has applied ideas from turbulent dynamics to brain activity, 
proposing that the scale-free nature of turbulence-like behaviour pro-
vides a dynamical regime in which hierarchical information cascades 
allow the brain to function optimally despite its relative slowness130–132. 
Turbulence-like properties have been found in fast local field poten-
tials in local brain regions133 and in whole-brain dynamics measured 
with magnetoencephalography134. Based on Kuramoto’s pioneering 
insight56, signatures of turbulence can be quantified from the vari-
ability across space-time of the local KOP135. It was proposed that this 
local signature of turbulence is a signature of local vorticity, perhaps 
analogous to brain spiralling136, and is in essence complementary 
with the concept of global metastability135 but focusing on the local 
dynamics rather than the whole system described here50,56,57,137–139. 
However, to show signatures of turbulence in fast neuronal dynamics 
of magnetoencephalography, which has poorer spatial resolution than 
fMRI, a new signature of local turbulence was introduced134. This metric 
captures pairwise phase differences between regions rather than their 
mean-field phase and is defined as the standard deviation across space 
and time of this local signature (Supplementary information S7).

Neurobiological drivers of metastability
The computational neuroscience studies reviewed above reveal multi-
ple dynamical mechanisms that can serve as alternative paths towards 
exhibiting transient states. These paths — and the additional paths to 
multi-stability — arise owing to specific features of the physical system. 
However, it is important to note that these models (and other models 
such as neuropercolation44) are not mutually exclusive. Indeed, all these 
models exhibit some features of metastability, including dynamic clus-
tering, partial synchronization followed by rapid desynchronization, 
and repeated or random sequences of transient states. In fact, it is highly 
non-trivial to disambiguate these dynamical mechanisms solely using 
data (see the section ‘The future: open questions and opportunities’).

For this reason, instead of focusing on how to perform inferences 
from these models, a more fruitful avenue towards revealing the neu-
robiological origins of metastability is to investigate the drivers of 
the features that these models are capturing at microscopic and mac-
roscopic levels. Here, we provide a brief overview of existent work in 
this direction.

Drivers at a microscopic level. Work on realistic models of recurrent 
spiking networks here implicate key roles for clustering, excitatory syn-
aptic weights, recurrent inhibition and intrinsic noise in the dynamic 
behaviour of these networks. Specifically, grouping excitatory neurons 
into clusters yields slow firing rate fluctuations in the presence of 
intrinsic noise and in the absence of stimuli140. Furthermore, having 
heterogeneous cluster sizes has been observed to increase the prob-
ability of the system visiting large clusters, thus initiating recurrent 
sequences of transient states127. Additionally, recurrent inhibition has 
been found to reduce the number of simultaneously active clusters127, 
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and intrinsic noise owing to excitatory–inhibitory balance has been 
observed to drive the system around multi-stable states127.

Drivers at a macroscopic level. Drivers of metastability from macroscale 
computational models include influences from structural connectivity,  
network topology, spectral heterogeneities and intrinsic noise.

The relationship between topology and the std-KOP signature of 
metastability was established in models with community structure57, 
based on healthy human connectomes69, the connectomes of people 

with traumatic brain injuries68, and the connectome of individuals with  
AD59. Specifically, compromised macroscopic organization of the 
human structural connectome, derived from subject-level diffusion 
tractography data, was associated with a reduction in a signature of 
metastability (std-KOP) in a cohort with AD (compared with controls)59 
together with reductions in higher-order network metrics including 
clustering coefficient and eigenvector centrality (influence of the node 
on a network) of the structural connectome. For traumatic brain injury, 
the model was informed by subject-level connectomes, and the same 

Glossary

Asymmetric
A systematic imbalance in some 
property of the system.

Attractor
A set of states on which many 
trajectories converge.

Basin of attraction
All the points in phase space that flow 
onto the attractor.

Bifurcation
A qualitative change in dynamics 
produced when a control parameter 
reaches a critical point.

Bistability
A form of dynamic stability wherein two 
attractors exist in the dynamics, that is, 
when there are two stable solutions of 
the differential equation describing the 
dynamics.

Chaos
A form of dynamical behaviour that 
can arise in a time-invariant nonlinear 
system. Chaos is characterized by 
sustained aperiodic (nonrepeating) 
oscillations, leading to extreme 
sensitivity of future states to small 
changes in present values of the system.

Chaotic attractor
An attractor that holds dynamics 
that are highly sensitive to their initial 
conditions.

Chaotic itinerancy
The behaviour of complicated systems 
with weakly attracting sets, in which 
destabilized attractors allow the 
system to leave its basin of attraction 
for another through a trajectory of 
connected saddles.

Control parameters
Parameters that modify a system of 
differential or difference equations, 
hence deforming the corresponding 
flows through phase space.

Crisis
The collision of an unstable periodic 
orbit and a coexisting chaotic attractor.

Critical fluctuations
Stochastic fluctuations that are orders 
of magnitude larger than normal, 
which occur when a system is close to 
a critical point. They may be sufficient 
to kick the system out of its basin and 
into the region of another attractor. 
A switch will occur, even though the 
original fixed point may still be classified 
as stable.

Critical point
The value of a control parameter at 
which a bifurcation occurs.

Dynamical systems theory
A branch of mathematics that studies 
how the state of systems evolves over 
time based on either an analytical 
(pencil and paper), a geometric (shapes) 
or a numeric (approximations using 
a computer) study of deterministic 
evolution equations.

Dynamic instabilities
Behavioural changes of the system in 
the vicinity of a bifurcation.

Fixed point
A point in the state space wherein the 
rate of change of the system with respect 
to time is equal to zero, corresponding 
to states at which the system remains 
unchanged unless perturbed.

Ghost attractors
Regions of phase space wherein the 
memory of a fixed point is attractive 
for the system. The memory is created 
by the annihilation of a fixed point and 
a repeller when a control parameter is 
changed.

Hidden Markov models
Statistical models that are used to 
describe the probabilistic relationship 
between sequences of observations 
and sequences of hidden states. They 
are used to classify sequences or 
predict future observations based on 
the underlying hidden processes that 
generate the data.

Metastability
A specific type of dynamics that may 
take place in a system with coexisting 
tendencies of attraction and repulsion, 
and is characterized by patterns that 
recur either in repeatable sequences 
(pattern) or flexible alternation 
(no pattern).

Milnor attractor
An attractor that no longer attracts all 
trajectories in its basin of attraction 
following an arbitrary small perturbation.

Monostability
A form of dynamic stability wherein a 
single attractor exists in the dynamics, 
that is, when there is one stable solution 
to the differential equation describing 
the dynamics.

Multi-stability
A form of dynamic stability wherein 
multiple stable attractors exist in the 
dynamics, that is, when there are two or 
more stable solutions to the differential 
equation describing the dynamics.

Order parameter
A single variable that captures the 
collective or macro-behaviour of a 
system composed of microscopic 
elements.

Phase space
The set of all possible states and, 
hence, contains all the allowed 
combinations of values of the 
variables of a system (also known 
as state variables).

Repeller
A set of states from which many 
trajectories migrate.

Saddles
Fixed points that are stable in one 
direction but unstable in another. 
Trajectories approach a saddle and are 
repelled away from it at the fixed point.

States
A state is a configuration of the variables 
of a system that is a solution to the 
equations.

Trajectory
A sequence of states within the phase 
space that satisfies the dynamics of 
the system as defined by its differential 
equation.
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signature of metastability was applied to the model data62. It was found 
that high-order network metrics — such as clustering coefficient and 
small worldness of the structural connectome — positively correlated 
with the signature of metastability and were also reduced.

In another study, a model of human functional connectivity con-
strained by the white matter connectome was used in combination 
with a focal lesioning approach to investigate the relationship between 
structural connectivity of macroscopic brain regions and large-scale 
neural dynamics68. Using the std-KOP signature of metastability, it was 
found that removing nodes with high eigenvector centrality (influ-
ence of the node on a network), or hub nodes joining topologically 
segregated network modules, led to increases in global metastability.

Pertaining to the role of heterogeneity, the first model of 
metastability34 incorporated symmetry breaking through the het-
erogeneous intrinsic frequencies of the metronome and the flexing 
finger. A model structured with a human connectome also generated 
metastable behaviour when the nodes in the model were endowed with 
heterogeneous frequencies141. A similar model, but with stochastic 
dynamics, found that when the model was set at maximum metastabil-
ity (std-KOP), the heterogeneous frequencies led to clustering of node 
phases and node frequencies142.

Finally, in systems with metastable dynamics, studies have shown 
that noise can stabilize the system68, reorganize frequency clusters 
and influence characteristic state duration times dependent on the 
magnitude of the noise143.

The future: open questions and opportunities
In the previous sections, we reviewed the past and present of metastabil-
ity research in neuroscience. In the following section, we discuss what 
may lay ahead for this area of research.

Metastability as a driver in behaviour, cognition and 
associated disorders
Using diverse signatures of metastability, we have seen convergent 
evidence that metastability in the brain may peak at some point during 
healthy development and then decline — a decline that seems to acceler-
ate in cases of injury or disease. Indeed, both increases and decreases 
of metastability have been associated with altered cognitive function 
in psychiatric illnesses59,64,77,93, healthy ageing71,74, pharmacological 
interventions94, extreme preterm birth92 and traumatic brain injury68. 
However, abnormally high brain metastability may occur in psychosis77. 
This body of evidence (though obtained from diverse signatures) may 
point to an ‘optimal range’ for metastability, associated with healthy 
cognitive function. This conjecture may be reinforced by the notion — 
reflected in many of the proposed signatures of metastability — that 
the brain needs to simultaneously balance the degree of integra-
tion required for global coordination with segregation of neuronal 
ensembles to achieve functional specialization4,144,145. Metastability, 
as operationalized by these signatures, can be seen as a natural way 
of accomplishing this balancing act. Additionally, as one may argue, 
switching between transient states may allow the brain to visit avail-
able configurations of neuronal interdependency in anticipation of 
moment-to-moment changes in the environment146.

Although these are compelling reasons for having metastability in 
the brain, throughout this article, we have taken care to conceptually 
disambiguate metastability and multi-stability. Crucially, we have also 
highlighted that commonly used signatures of metastability do not 
disambiguate metastability and multi-stability. The same is true for 
the above-mentioned reasons that supposedly make metastability 

valuable for the brain: balancing integration and segregation and 
switching in preparation to a changing environment — both of which 
could probably be accomplished by metastability and multi-stability. 
Furthermore, it is worth noting that there may be scenarios wherein 
systems that have metastable dynamics at a microscopic level could 
appear as multi-stable at a macroscopic level owing to simplifications 
(for example, mean-field approximations) of the underlying model, 
and hence analyses and interpretations must be handled with care.

Overall, although the literature provides conclusive evidence for 
the value of transient dynamics, neither the theoretical reasons nor the 
empirical studies using signatures of metastability have conclusively 
demonstrated yet why (or whether) the brain should exhibit meta-
stability over multi-stability. This does not undermine the empirical 
value that some of these signatures have proven to have as informative 
biomarkers — it only states that their interpretation requires nuance. 
Arguably, metastability presents the advantage that a metastable 
system does not need noise or other perturbations to escape from 
being ‘trapped’ in an attractor, hence allowing transient dynamics ‘by 
design’. However, because noise is inherent in biological systems, and 
the state in which the brain resides may be in the vicinity of a critical 
point wherein fluctuations may be amplified (Box 3), it remains to be 

Box 3 | Metastability and criticality
 

The concept of criticality — and its multiple signatures — has been 
widely applied to study brain activity across multiple scales167 either 
by investigating phase transitions8,46,168–170 or following the paradigm 
of self-organized criticality, in which a link between the control and 
order parameters spontaneously sets the system near a critical 
regime171–176. Criticality is a special phenomenon in physical systems 
that characterizes conditions wherein a small change on a control 
parameter (Box 1) can elicit a huge change on an order parameter — 
characterizing, for example, what happens when ice turns into 
water (with temperature being the control parameter)177. Systems 
that undergo such abrupt changes are said to undergo a phase 
transition, and the value of the control parameter at which this 
happens is known as the critical point. Systems at their critical state 
(that is, at their critical point) exhibit distinctive properties, 
including power-law scaling and long-range spatial and temporal 
correlations177. Although criticality was originally studied in systems  
in thermodynamic equilibrium, its study has also included systems far  
from equilibrium (for example, biological systems) undergoing 
non-trivial dynamics. Such systems have been shown to exhibit 
characteristic dynamical properties, including fluctuation 
enhancement (critical fluctuations) and slowing down of global 
variables1,166.

Criticality and metastability are different concepts, although 
both refer to behaviours that may take place simultaneously. 
Multi-stable switching could be a consequence of critical 
fluctuations at a weakly stable state, that is, a state with a shallow 
valley in an attractor landscape. By contrast164, metastable 
switching in the non-chaotic systems described elsewhere9,57,101,143 
does not require critical fluctuations for the behaviour to take place.

In summary, criticality can have a role for the emergence of 
metastable behaviours, but metastable dynamics do not require 
the brain to be operating exclusively ‘at criticality’, or to refer to 
criticality at all.
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determined how essential this advantage of metastability would be 
for the brain.

This situation, however, does not call for conflating metastability 
and multi-stability — as has often been done in the literature. On the 
contrary, it calls for greater scrutiny into their differences, and greater 
care to distinguish them in computational and empirical work. Below, 
we outline promising directions for accomplishing this, which are now 
beginning to emerge: generative models, null hypotheses and the 
distribution of dwell times.

Generative models and null hypotheses for  
inferring metastability
Arguably, inferring metastability is best achieved by inverting a gen-
erative model of the system and finding that it best fits the data when 
tuned into a metastable regime (that is, saddles are present). Inferring 
‘metastability’ from ‘variability of data’ is a weak claim because that 
variability may be present in both metastable and multi-stable sys-
tems. Other signatures without this weakness, but which are less trac-
table in large systems, have been proposed, including the k number4, 
fluctuations of relative phase147,148 (Supplementary information S3), 
and phase difference derivative149. In the setting in which suggestions 
of metastability are made based directly on data metrics, additional 
signatures to disambiguate the various candidates outlined in this 
Review should be assessed. The key differentiator is the manner (and, 
hence, the statistics) of how the system dwells (multi-stability), cycles 
or sequences (metastability), or bursts (itinerancy) or exhibits other 
behaviour not covered in this Review, such as a random walk with no 
dwelling (criticality)5,150.

With the myriad of signatures that can be found in the literature, 
choosing the signature most appropriate to address a given scientific 
question at hand is not always an easy task. Whereas some signatures 
conceptually correspond to properties related to integration and 
segregation (they themselves are not clearly defined concepts, which 
have been operationalized in a variety of ways), other signatures are 
associated with the repertoire of recurring metastable spatial patterns 
of brain activity. In the absence of a strong rationale to pick a specific 
signature, it would be advisable to compare and contrast several of 
the reported signatures against one’s chosen null to obtain a more 
complete overview. Additionally, it is worth keeping in mind that the 
claim that a particular model yields metastable151 or multi-stable124 
dynamics often hinges on the assumptions made and the aspects of 
the system that were chosen as the relevant control parameters and/or 
state variables152. One interesting avenue to further investigate meta-
stability and its multiple signatures is by building approaches based 
on alternative models to contrast hypotheses. Along this direction, 
two types of approach are particularly promising: (1) null models that 
allow assessment of the relevance of a specific effect and (2) generative 
models to describe how a system behaves under certain conditions.

Null models represent a powerful approach to derive inferences, 
not only against an empirical control group but also against controls 
generated according to desired specifications153,154. For example, some 
studies75,93,155 have compared observed dynamics against dynamics 
obtained from a null model (such as phase randomization), using this 
approach to determine whether the data could have arisen from purely 
random switching (as would be the case in noise-driven multi-stability). 
The more stringently one’s null model can reflect the difference 
between metastability and multi-stability, the stronger is the inference 
that can be drawn. For example, rather than randomizing phases, one 
could build different biophysically plausible models of how the data 

may have been generated: one multi-stable and another metastable. 
Owing to the flexibility of computational models, the type of stability 
can be determined a priori. Therefore, one can then use a suitable 
measure of goodness-of-fit to determine whether the empirically 
observed data are more consistent with the metastability-generating 
or multi-stability-generating mechanism.

More broadly, computational models can also be used for fur-
ther clarifying the computational advantages of metastability, and 
simulated dynamics can be obtained from metastable and multi-stable 
systems that are otherwise identical. These dynamics can then be 
compared across a battery of measures, such as different indicators 
of integration, segregation and information transmission156. Does the 
metastable system systematically outperform the multi-stable one on 
any such dimension? If so, it would be a plausible candidate for further 
theoretical investigation.

The same approach can also be used to evaluate the neural mech-
anisms (that is, the properties of the physical system) underlying 
metastability, building on the studies reviewed above. For example, 
regional neurobiological correlates of a given signature of meta-
stability may be identified in empirical data (for example, through 
databases such as NeuroMaps157, which provides access to brain maps 
of receptor density, transcriptomic patterns, and other features of 
structural and functional brain architecture). Maps showing signifi-
cant associations with metastability may then be incorporated into 
generative computational models of brain dynamics that allow for 
regional heterogeneities, comparing the resulting dynamics against 
models with random or absent heterogeneity154. Greater markers 
of metastability under the true map would provide evidence for a 
mechanistic role, beyond mere correlation. Establishing whether 
any cellular, molecular and metabolic disease markers are associ-
ated with metastability could lead to improved understanding of the 
pathophysiology of neurodevelopmental and neurodegenerative 
disorders and potentially lead to a more sophisticated understanding 
of treatment targets and efficacy.

Distribution of dwell times as a potential differentiator 
between metastability and multi-stability
A promising — yet still only partially explored5,158 — way to determine 
whether observed dynamics come from a metastable or multi-stable 
system is to investigate the distribution of state dwell times. In effect, 
switching between two or more stable states in multi-stable sys-
tems is driven by noise, and hence the dwell time will (under stand-
ard assumptions on the noise distribution) display an exponential 
distribution15,121,122 (Fig. 5a). By contrast, switching within a cycle of 
saddles in metastable dynamics does not involve trapping, and hence 
dwell times can exhibit distributions that are different from exponential 
ones. In a computational whole-brain model of coupled neural masses, 
the distribution of dwell times for different patterns of large-scale spon-
taneous activity appears to follow a gamma distribution105 (Fig. 5b). 
Additionally, in a neural mass model informed by the macaque connec-
tome, chaotic phase synchronization and desynchronization between 
dynamic clusters of neuronal ensembles as a consequence of chaotic 
itinerancy also yielded a duration of synchronized episodes that fol-
lowed a gamma distribution158 (Fig. 5c). However, it is worth mentioning 
that a biophysical model has successfully reproduced the ‘waxing and 
waning’ of alpha-band (8–13 Hz) EEG activity in humans at rest using 
noise-driven switching between a low-amplitude and a high-amplitude 
oscillatory state, resulting in a (stretched-)exponential (that is, not a 
gamma) distribution (Fig. 5a).
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Overall, although computational observations tend to support the 
relationship between metastability and the gamma distribution of dwell 
times, more work is needed to build a more principled understanding 
of this phenomenon. If such observations continue to be corroborated 

and a robust underlying rationale can be found, goodness-of-fit of the 
gamma distribution via, for example, the Kullback–Leibler divergence159, 
could be a way to obtain an all-or-none test for metastability (versus 
multi-stability), unlike signatures that are graded and conflate the two.
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Fig. 5 | Duration statistics in models of multi-stable and metastable 
dynamics. a, Dwell-time distributions for a modelled state-dependent 
noise-driven multi-stable system. Cumulative distributions of dwell times of 
oscillations in the alpha frequency band (8–13 Hz) during resting state. The 
instantaneous power in the alpha band switches spontaneously and erratically 
between distinct low-amplitude (black curve) and high-amplitude (red 
curve) modes, and their dwell times follow long-tailed stretched-exponential 
forms (white curves). The grey curves indicate a simple exponential form. 
Cumulative distributions were separately rescaled to have a mean value of 1. 
b, Dwell time gamma distributions arising from metastable waves in a network 
of neural mass models. The left image shows large-scale wave patterns in the 
model, with six snapshots of the dynamics of pyramidal mean membrane 
potential at various latencies. The middle panel highlights that each pattern 
has a signature wherein vertical lines depict low values of inter-hemispheric 

cross-correlation corresponding to wave transitions. The right chart shows dwell 
time distributions for the model at particular parameter settings. c, Duration 
of synchronization episodes in a network of neural mass models. The left panel 
shows a macaque connectome-based network of chaotic oscillators. Inhibitory 
cells are shown in blue and pyramidal cells are shown in red. In the middle panel, 
neuronal clusters synchronize and desynchronize in phase and in antiphase 
with other clusters. The right panel shows that the duration of synchronization 
episodes resembles a gamma distribution. The mean duration is shown with a 
dashed vertical line. Part a is adapted with permission from ref. 122, Society for 
Neuroscience. Part b is adapted from ref. 105, Springer Nature Limited. Left image 
in part c is adapted from ref. 6, Springer Nature Limited. Middle image in part c is 
adapted from ref. 118, CC BY 4.0. Right image in part c is adapted with permission 
from ref. 158, copyright (2007) National Academy of Sciences, U.S.A.
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Concluding remarks
Metastability is a fascinating phenomenon that offers valuable ways 
to frame brain function. In this Review, we have provided a broad 
overview of the historical foundations of metastability, its dynamical 
mechanisms, its multiple signatures and their applications in empirical 
studies, and the most promising avenues of progress for the field. Our 
core message is that metastability can be rigorously characterized in 
terms of the rules that govern the dynamics of a system, and this rigour 
is essential for understanding that (1) metastability can arise through 
different paths but is still one unifying construct and (2) it should not 
be conflated with any of its practical signatures, nor with related but 
distinct concepts of complexity, criticality or multi-stability.

The future of metastability as a fundamental construct for neuro-
science rests on demonstrating its role (over and above multi-stability) 
in behaviour, cognition and associated disorders and on understanding 
its neurobiological underpinnings. Such a feat would not only deepen 
our understanding of the dynamics that govern brain activity but also 
open the door towards devising interventions aimed at restoring a 
healthy regime of brain dynamics through appropriate pharmaco-
logical, psychotherapeutic or non-invasive brain stimulation control 
strategies.

Overall, metastability has an increasingly prominent role in con-
temporary neuroscience, informing computational models and offer-
ing promising biomarkers — a role we expect to keep growing in the 
future. It is our hope that the synthesis provided in this Review will 
foster rigour and clarity in future studies, further extending these 
promising lines of investigation.

Code availability
All codes used to estimate the signatures of metastability from fMRI 
data and to generate Videos 1, 2 and 3 are publicly available. See 
Supplementary information for details.
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