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In new experiments on coordinated human movement we demonstrate that the process of intentionally switching from one 

pattern of coordination to another is governed by the dynamics of the patterns themselves. In particular, the stability of the 

patterns as established in earlier experiments on instabilities of these coordination patterns, determines the nature of the transient 

switching process. Measures such as the length of the transient (or switching time) and its distribution closely match theoretical 

predictions. 

Nonequilibrium phase transitions are not only at 

the core of pattern formation in open physical (see 

e.g. ref. [ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 ] ) and chemical [ 2,3] systems but have 

recently been encountered also in several biological 

systems [ 4-71. Among the dynamical features ob- 

served in such systems are the onset of oscillations, 

period doubling bifurcations and chaos. A central 

theme of the theory of nonequilibrium phase tran- 

sitions is the reduction of the number of degrees of 

freedom that occurs near critical points where pat- 

terns form or change spontaneously. Emerging pat- 

terns may be characterized by only a few collective 

variables or order parameters whose dynamics are 

low dimensional [ 8 1. In biological systems collec- 

tive variables defining patterned states are not known 

a priori. Rather they have to be identified and their 

dynamics studied through a detailed stability anal- 

ysis. Points of pattern change offer a useful depar- 

ture point for implementing such an approach 

because they allow ( 1) a clear differentiation of one 

pattern from another; and (2) the study of stability 

and loss of stability. In nonequilibirum phase tran- 

sitions, non-trivial predictions are associated with 

such loss of stability - including enhanced fluctua- 

tions and relaxation time of the order parameter - 

that may be subjected to direct experimental test. 

Experiments by ourselves and others on coordi- 

nation of rhythmic biological motion have found 

spontaneous transitions in behavioral patterns when 

a relevant control parameter crosses a critical point 

[ 7,9, lo]. We were able to identify the relative phase, 

9, among the rhythmically moving components as an 

essential collective variable, characterizing different 

temporal patterns (e.g. in-phase and anti-phase). As 

theoretically predicted [ 11,12 ] enhanced fluctua- 

tions of relative phase [ 13,141 and growth in relax- 

ation time (the time it takes to return to the 

coordination pattern after a small perturbation 

[ 15,161 - both indicative of loss of stability - ac- 

companied the transition from one (anti-phase) to 

the other (in-phase) pattern. Furthermore, details of 

the actual transient switching process, such as the 

mean duration, or so-called switching time and its 

distribution, were predicted [ 121 and found to be in 

striking agreement with theory [ 161. 

Although the concepts and tools of nonequilib- 

rium phase transitions provide a foundation for un- 

derstanding behavioral pattern, its stability and 

change, on several levels of description [ 17,18 ] one 

may ask whether it is only the more physical aspects 

of pattern formation that have been addressed. Much 

of the research on biophysical and physiological sys- 

tems (e.g. electrically stimulated neutral [ 41 or car- 

diac [6] tissue) deals with spontaneous pattern 

formation when the system is driven to its apparent 

limits of stability. From the point of view of a phys- 
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ical biology (see e.g. ref. [ 19 ] ), it is relevant to ask 

whether the methods of low-dimensional dynamics 

may also allow us to address certain zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAessentially bi- 

ological aspects of pattern formation. For example, 

an essential feature of organisms is the ability to flex- 

ibly change behavioral pattern in an apparently pur- 

poseful fashion. Is the process of such intentional 

change from one pattern of coordination to another 

constrained (like spontaneous transitions) by the 

underlying pattern dynamics, in particular by the 

relative stability of the patterns? To answer this 

question, we report new experiments in which in- 

tentional changes among temporal patterns are char- 

acterized by the duration of the transient process, the 

switching time. We find that intentional behavioral 

change is governed by the underlying dynamics, i.e. 

by the different pattern stabilities. Our results are 

mapped onto a theoretical model [ 20,2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 ] in which 

the intention to switch acts as a perturbation of the 

order parameter dynamics attracting them to the in- 

tended behavioral pattern. 

The experimental task as rhythmic bimanual co- 

ordination in the transverse plane, in which the sub- 

ject began either in the in-phase pattern (fingers 

moving toward and away from each other in unison) 

or the anti-phase pattern (fingers moving in paral- 

lel). A Macintosh 5 12-E computer was programmed 

to produce an auditory metronome pulse (50 ms 

square wave) at a certain frequency which the sub- 

ject was instructed to follow. Each trial began with 

a metronome signal that lasted for 10 movement 

cycles and was then turned off. Subjects were in- 

structed to continue cycling their index fingers at the 

established frequency. After a further 10 cycles, an 

auditory tone occurred that was the signal for the 

subject to switch immediately to the other mode of 

coordination which the subject maintained until the 

end of the trial (an additional 20 cycles). The ex- 

perimental paradigm is shown in fig. 1. The x- and 

y-coordinates of the two index fingers were recorded 

using the WatsmartTM motion analysis technique 

(Northern Digital Inc., Waterloo, Ontario, Can- 

ada). Light-weight, infrared light emitting diodes 

(IREDs) were mounted permanently in thimbles 

into which the subject’s index fingers were inserted 

proximal to the distal interphalangeal joints. The 

thimble IREDs were placed so as to project toward 

two infrared sensitive cameras. IREDs were also at- 
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Fig. 1. Experimental paradigm for studying intentional switching 

among behavioral patterns. (a) The trajectories of the left and 

right index ftngers are shown for two typical experimental runs 

with different initial conditions, in-phase (top) or anti-phase 

(bottom). The 10 metronome pulses (e.g. frequency=2.25 Hz) 

establish the required oscillation frequency and are followed 10 

cycles later by a single pulse that cues the intentional switching 

process. For the in-phase initial condition, the frequencies of the 

two hands are locked at 2.24 Hz before the transition and 2.18 

Hz after the transition. The correspoding frequencies for the anti- 

phase initial condition are 2.19 Hz (before) and 2.16 Hz (after). 

T$~ is the estimated switching time in the two examples. (b) Sam- 

ple switching time estimate (rssw) obtained from kinematic data 

of left (dashed) and right (solid) index lingers and the relative 

phase between them. 
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tached to the knuckles which acted as rigid segment 

monitors in relation to the finger movement. Before 

each experimental session, the calibration error of 

the cameras’ position and direction in relation to the 

experimental field of view was calculated. To cali- 

brate the cameras, a 30 mm cubic steel frame con- 

taining 24 IREDs and three permanently attached 

strober units were placed in the field of motion. These 

IREDs wer pre-surveyed by computer (IBM PC/AT) 

to a resolution of 0.1 mm in 3 dimensions, thus al- 

lowing the frame to serve as a permanent reference 

point across experimental sessions. Once the frame 

and cameras were adjusted, a calibration program 

updated the mathematical 3D reconstruction con- 

stants and produced a calibration conversion of the 

raw 2D to 3D data trajectories. Calibration, erorr for 

all sessions was less than 2 mm. 

The IRED data were digitized in real-time at 200 

Hz and stored on disk for later processing and anal- 

ysis of the movement trajectories. In addition, elec- 

tromyographic (EMG) recordings form the first 

dorsal interosseus muscles of the left and right in- 

dexed fingers were obtained using silver-silver chlo- 

ride electrodes. These signals were preamplified on- 

site and dc coupled to an active high pass filter ( - 3 

dB cut-off of 75 Hz). The root mean square wave- 

forms were sampled at 400 Hz. 

Using interactive computer graphic displays, the 

main measure of interest - the length of the actual 

transient between the two modes of coordination - 

was determined, i.e., the total amount of time from 

where the relative phase, 9, first diverged from its 

previous mean state ( 6 = 0 ’ or d x 180 ’ ) to when the 

relative phase stabilized ( + 15’ ) for two consecu- 

tive cycles. Both the time series of the two index fin- 

gers (fig. la) and the calculated relative phase, @, of 

their motions (fig. 1 b, see refs. [ 7,141) were used to 

estimate the experimental switching time, r,,. The 

mean of these durations, averaged across trial runs 

(6) and subjects (4), the mean switching time, is 

shown in fig. 2 for each of the initial conditions (in- 

phase or anti-phase) as a function of the metronome 

frequencies used. Clearly, switching from the in-phase 

to the anti-phase mode is slower by approximately a 

factor of two than switching in the opposite direc- 

tion. Analysis of variance of the switching time bears 

this difference out. Each subject exhibited a highly 

significant condition effect, Fs( 1,60) = 52.5 (JB), 
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Fig. 2. The mean switching time (mean duration of transient from 

one mode of coordination to the other) collapsed over subjects 

and experimental trials as a function of the required oscillation 

frequency for switching from anti- to in-phase (circles) and from 

in- to anti-phase (asterisks). 

20.7 (JD), 27.3 (JJ) and 100.4 (JS), Ps<O.OOOl. 

Fig. 3 shows a histogram of the experimental distri- 

butions of switching times in the two directions. Note 

the longer tail and larger mean of the switching time 

in the in- to anti-phase condition. 

Intuitively, these results are highly consistent with 

the differential stability of the two coordination pat- 
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Fig. 3. The experimentally obtained frequency distributions of 

switching times collapsed over subjects and trials for both direc- 

tions of switching. 
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terns established in studies of spontaneous transi- 

tions [ 7,13,14]. Within the theoretical framework of 

dynamic patterns [ 17,18,20,2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 ] we can provide an 

explicit model that corroborates this intuition. 

Choosing relative phase as the relevant collective 

variable or order parameter we map observed pat- 

terns of coordination onto fixed point attractors of 

the dynamics of relative phase. In the theory for 

spontaneous transitions among modes of coordina- 

tion, relative phase dynamics of the form 

i=fl@)=- asin(26sin(2@)+&5, (1) 

(where & is gaussian white noise of variance Q) were 

identified, that accounted for differences in stability 

between the two basic patterns and the observed 

phase transition [ 11,121. We assume that these so- 

called intrinsic dynamics are still valid in the pres- 

ence of an intention to change behavioral pattern. 

This intentional information is assumed to be part 

of the relative phase dynamics such that it attracts 

relative phase to the intended relative phase. Ne- 

glecting hypothesized physiological processes asso- 

ciated with intentional acts [ 22 ] and being concerned 

only with intentional influences on the performed 

coordination patterns we assume, for the time being, 

that the intention becomes instantaneously effective. 

The onset time to of intention is therefore equated to 

the onset of the transient observed experimentally. 

The simplest functional form of the contribution of 

intentional information to the relative phase dynam- 

ics is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

f;,,(~,t)=--(t--~)Ci,,Sin(~-W), (2) 

where v/ is the intended relative phase, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACint > 0 is a 

parameter that measures the strength of this part of 

the dynamics and 19 is a Heaviside step function that 

is zero for negative arguments and one for positive 

arguments. The complete dynamics, 

i=f(@) +x,(@), (3) 

describes both the initial and final stationary state as 

well as the transient switching process, similar to the 

case for spontaneous transitions [ 121. We charac- 

terize the switching process by the switching time 

which is the length of the transient from one state to 

the other. This switching time is a random variable 

whose distribution can be determined from the time- 

dependent probability distribution of relative phase. 

Eq. (3) defines a Fokker-Planck equation for this 

probability distribution that can be solved numeri- 

cally. The initial distributions of relative phase are 

determined as locally stationary solutions around 

@= 0 or @= + n: depending on the direction of 

switching (see refs. [ 12,2 1 ] for details ). 

Consistent with the assumptions stated above we 

obtain all parameter values for the intrinsic part of 

the dynamics, f( @), from our experiments on spon- 

taneous transitions [ 12-l 61. Typical numerical val- 

ues were a=1 Hz, b=O.S Hz and Q=O.25 Hz for 

which the two states at $= 0 and @= 2 x differ in their 

stability, and the relative phase fluctuations and re- 

laxation times are of the correct order of magnitude. 

The only new adjustable parameter is Cint which in 

comparison to a and b measures the strength of the 

intentional influence on the dynamics. When tint is 

chosen as tint = 10 Hz the correct order of magnitude 

for the switching times is obtained. The theoretical 

result for the probability density of switching times 

is displayed in fig. 4. Note the longer tail and larger 

mean of the distribution for switching from the more 

stable (in-phase) to the less stable (anti-phase) state, 
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Fig. 4. The probability density of switching time for both direc- 

tions of switching as obtained theoretically from the stochastic 

dynamic theory (eq. ( 3) ) by numerically integrating the corre- 

sponding Fokker-Planck equation. The only adjusted parame- 

ter, c,.,, was chosen to account roughly for the observed order of 

magnitudes of the mean switching times. The solid line is the anti- 

to in-phase distribution; the dashed line is the in- to anti-phase 

distribution. 
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in remarkable agreement with the experimental re- 

sult (fig. 3). The mean switching times from these 

distributions are 0.4 1 s for switching from anti-phase 

to in-phase and 0.85 s for switching from in-phase to 

anti-phase, which should be compared to the data in 

fig. 1. More qualitativley, the theory can account for 

the ability of the system to sustain a pattern that is 

intrinsically unstable, because an intention (as part 

of the dynamics) can change the stabilities of the in- 

trinsic dynamics. However, the presence of the in- 

trinsic dynamics in eq. (3) is still felt as a difference 

in stability between the two patterns. We note in 

passing that a theoretical model can also be formu- 

lated on the level of the component oscillators [ 2 11. 

In summary, we have shown experimentally that 

intentional switching among patterns of coordina- 

tion is strongly influenced by the underlying behav- 

ioral pattern dynamics, i.e., by the different stabilities 

of the patterns. The match between these new ex- 

perimental results and a theoretical model based on 

a generalization of dynamic pattern theory is quite 

satisfactory. The strategic step of identifying collec- 

tive variables for behavioral patterns proves to be 

crucial in establishing a theory-experiment relation 

in this biological system, making it possible to define 

precisely those aspects of behavior that can be in- 

tentionally modified. More generally our findings 

suggest that the language and tools of stochastic dy- 

namics are quite adequate to address inherently bi- 

ological and even psychological questions. 
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